全文获取类型
收费全文 | 155542篇 |
免费 | 5467篇 |
国内免费 | 6018篇 |
专业分类
167027篇 |
出版年
2024年 | 150篇 |
2023年 | 895篇 |
2022年 | 2100篇 |
2021年 | 3436篇 |
2020年 | 2353篇 |
2019年 | 2837篇 |
2018年 | 13822篇 |
2017年 | 12105篇 |
2016年 | 9922篇 |
2015年 | 4674篇 |
2014年 | 5250篇 |
2013年 | 5370篇 |
2012年 | 10057篇 |
2011年 | 17823篇 |
2010年 | 14897篇 |
2009年 | 10923篇 |
2008年 | 12912篇 |
2007年 | 14163篇 |
2006年 | 2876篇 |
2005年 | 2680篇 |
2004年 | 2672篇 |
2003年 | 2671篇 |
2002年 | 2028篇 |
2001年 | 1315篇 |
2000年 | 1181篇 |
1999年 | 977篇 |
1998年 | 591篇 |
1997年 | 542篇 |
1996年 | 567篇 |
1995年 | 485篇 |
1994年 | 459篇 |
1993年 | 385篇 |
1992年 | 517篇 |
1991年 | 398篇 |
1990年 | 316篇 |
1989年 | 300篇 |
1988年 | 240篇 |
1987年 | 226篇 |
1986年 | 189篇 |
1985年 | 168篇 |
1984年 | 131篇 |
1983年 | 150篇 |
1982年 | 86篇 |
1981年 | 46篇 |
1980年 | 53篇 |
1979年 | 63篇 |
1976年 | 46篇 |
1974年 | 54篇 |
1972年 | 299篇 |
1971年 | 300篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
ChaoChien Chang KeeChin Sia JiaFeng Chang ChiaMo Lin ChuenMao Yang ITa Lee Thi Thuy Tien Vo KuoYang Huang WeiNing Lin 《Journal of cellular and molecular medicine》2022,26(14):3850
Obesity is a world‐wide problem, especially the child obesity, with the complication of various metabolic diseases. Child obesity can be developed as early as the age between 2 and 6. The expansion of fat mass in child age includes both hyperplasia and hypertrophy of adipose tissue, suggesting the importance of proliferation and adipogenesis of preadipocytes. The changed composition of gut microbiota is associated with obesity, revealing the roles of lipopolysaccharide (LPS) on manipulating adipose tissue development. Studies suggest that LPS enters the circulation and acts as a pro‐inflammatory regulator to facilitate pathologies. Nevertheless, the underlying mechanisms behind LPS‐modulated obesity are yet clearly elucidated. This study showed that LPS enhanced the expression of cyclooxygenase‐2 (COX‐2), an inflammatory regulator of obesity, in preadipocytes. Pretreating preadipocytes with the scavenger of reactive oxygen species (ROS) or the inhibitors of NADPH oxidase or p42/p44 MAPK markedly decreased LPS‐stimulated gene expression of COX‐2 together with the phosphorylation of p47phox and p42/p44 MAPK, separately. LPS activated p42/p44 MAPK via NADPH oxidase‐dependent ROS accumulation in preadipocytes. Reduction of intracellular ROS or attenuation of p42/p44 MAPK activation both reduced LPS‐mediated COX‐2 expression and preadipocyte proliferation. Moreover, LPS‐induced preadipocyte proliferation and adipogenesis were abolished by the inhibition of COX‐2 or PEG2 receptors. Taken together, our results suggested that LPS enhanced the proliferation and adipogenesis of preadipocytes via NADPH oxidase/ROS/p42/p44 MAPK‐dependent COX‐2 expression. 相似文献
143.
Xiaoxi Yang Chuiguo Sun Xiangyu Meng Guanghui Chen Tianqi Fan Chi Zhang Zhongqiang Chen 《Journal of cellular and molecular medicine》2022,26(14):3862
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF. 相似文献
144.
Jiantong Liu Xinyu Wang Lin Liu Xuefeng Wu Zhichao Xia Qingxue Guo 《Ecology and evolution》2022,12(7)
Deciduous and evergreen trees differ in their responses to drought and nitrogen (N) demand. Whether or not these functional types affect the role of the bacterial community in the N cycle during drought remains uncertain. Two deciduous tree species (Alnus cremastogyne, an N2‐fixing species, and Liquidambar formosana) and two evergreen trees (Cunninghamia lanceolata and Pinus massoniana) were used to assess factors in controlling rhizosphere soil bacterial community and N cycling functions. Photosynthetic rates and biomass production of plants, 16S rRNA sequencing and N‐cycling‐related genes of rhizosphere soil were measured. The relative abundance of the phyla Actinobacteria and Firmicutes was higher, and that of Proteobacteria, Acidobacteria, and Gemmatimondaetes was lower in rhizosphere soil of deciduous trees than that of evergreen. Beta‐diversity of bacterial community also significantly differed between the two types of trees. Deciduous trees showed significantly higher net photosynthetic rates and biomass production than evergreen species both at well water condition and short‐term drought. Root biomass was the most important factor in driving soil bacterial community and N‐cycling functions than total biomass and aboveground biomass. Furthermore, 44 bacteria genera with a decreasing response and 46 taxa showed an increased response along the root biomass gradient. Regarding N‐cycle‐related functional genes, copy numbers of ammonia‐oxidizing bacteria (AOB) and autotrophic ammonia‐oxidizing archaea (AOA), N2 fixation gene (nifH), and denitrification genes (nirK, nirS) were significantly higher in the soil of deciduous trees than in that of the evergreen. Structural equation models explained 50.2%, 47.6%, 48.6%, 49.4%, and 37.3% of the variability in copy numbers of nifH, AOB, AOA, nirK, and nirS, respectively, and revealed that root biomass had significant positive effects on copy numbers of all N‐cycle functional genes. In conclusion, root biomass played key roles in affecting bacterial community structure and soil N cycling. Our findings have important implications for our understanding of plants control over bacterial community and N‐cycling function in artificial forest ecosystems. 相似文献
145.
146.
147.
148.
Weifeng He Yuan Gao Jing Zhou Yi Shi Dajing Xia Han-Ming Shen 《International journal of biological sciences》2022,18(12):4690
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic. 相似文献
149.
叶绿体基因组编码许多参与光合作用和其他代谢过程的关键蛋白质,在叶绿体中合成的代谢物对于植物正常的生长发育至关重要。根对紫外线-B辐射敏感[Root-UVB (ultraviolet radiation B)-sensitive, RUS]蛋白属于叶绿体蛋白,由高度保守的DUF647结构域组成,在参与植物形态发生、物质运输和能量代谢等多种生命活动的调控中发挥作用。本文就近年来关于RUS家族在植物的胚胎发育、光形态建成、维生素B6稳态、生长素转运和花药发育等生长发育过程中的相关研究进行回顾和总结,为深入研究其在植物生长发育中的分子调控机制提供了参考。 相似文献
150.
Staining of Some Specific Regions of Human Chromosomes,particularly the Secondary Constriction of No. 9 总被引:23,自引:0,他引:23
SEVERAL procedures have been described recently which produce specific patterns of differential staining in human chromosomes1–9. Techniques which involve DNA denaturation and reannealing reveal deeply stained areas on centromere and secondary constriction regions which have been equated with constitutive heterochromatin9. 相似文献