首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4866篇
  免费   537篇
  国内免费   806篇
  6209篇
  2024年   29篇
  2023年   139篇
  2022年   204篇
  2021年   327篇
  2020年   245篇
  2019年   312篇
  2018年   246篇
  2017年   184篇
  2016年   294篇
  2015年   365篇
  2014年   424篇
  2013年   450篇
  2012年   468篇
  2011年   464篇
  2010年   278篇
  2009年   222篇
  2008年   269篇
  2007年   194篇
  2006年   163篇
  2005年   122篇
  2004年   120篇
  2003年   118篇
  2002年   110篇
  2001年   78篇
  2000年   54篇
  1999年   58篇
  1998年   36篇
  1997年   40篇
  1996年   26篇
  1995年   20篇
  1994年   22篇
  1993年   24篇
  1992年   22篇
  1991年   17篇
  1990年   20篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1950年   1篇
排序方式: 共有6209条查询结果,搜索用时 0 毫秒
91.
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody-drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post-transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell-derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC-derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma-forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.  相似文献   
92.
93.
Cui  Guibin  Zhao  Yanfeng  Zhang  Jialing  Chao  Manning  Xie  Kunliang  Zhang  Chao  Sun  Fengli  Liu  Shudong  Xi  Yajun 《Plant molecular biology》2019,100(4-5):391-410
Plant Molecular Biology - Our results reveal both soil drought and PEG can enhance malate, glutathione and ascorbate metabolism, and proline biosynthesis, whereas soil drought induced these...  相似文献   
94.
The coronavirus disease 2019 (COVID-19) global pandemic evoked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a major public health problem with significant morbidity and mortality. Understanding the pathogenesis and molecular mechanisms underlying this novel virus is crucial for both fundamental research and clinical trials in order to devise effective therapies and vaccination regimens. Basic research on SARS-CoV-2 largely depends on ex vivo models that allow viral invasion and replication. Organoid models are now emerging as a valuable tool to investigate viral biology and disease progression, serving as an efficient platform to investigate potential therapies for COVID-19. Here, we summarize various human stem cell-derived organoid types employed in SARS-CoV-2 studies. We highlight key findings from these models, including cell tropisms and molecular mechanisms in viral infection. We also describe their use in identifying potential therapeutic agents against SARS-CoV-2. As more and more advanced organoids emerge, they will facilitate the understanding of disease pathogenesis for drug development in this dreaded pandemic.  相似文献   
95.
96.
With the development of mass spectrometry (MS)-based proteomics technologies, patient-derived xenograft (PDX), which is generated from the primary tumor of a patient, is widely used for the proteome-wide analysis of cancer mechanism and biomarker identification of a drug. However, the proteomics data interpretation is still challenging due to complex data deconvolution from the PDX sample that is a cross-species mixture of human cancerous tissues and immunodeficient mouse tissues. In this study, by using the lab-assembled mixture of human and mouse cells with different mixing ratios as a benchmark, we developed and evaluated a new method, SPA (shared peptide allocation), for protein quantitation by considering the unique and shared peptides of both species. The results showed that SPA could provide more convenient and accurate protein quantitation in human–mouse mixed samples. Further validation on a pair of gastric PDX samples (one bearing FGFR2 amplification while the other one not) showed that our new method not only significantly improved the overall protein identification, but also detected the differential phosphorylation of FGFR2 and its downstream mediators (such as RAS and ERK) exclusively. The tool pdxSPA is freely available at https://github.com/Li-Lab-Proteomics/pdxSPA.  相似文献   
97.
Cancer-associated adipocytes (CAAs), which are adipocytes transformed by cancer cells, are of great importance in promoting the progression of breast cancer. However, the underlying mechanisms involved in the crosstalk between cancer cells and adipocytes are still unknown. Here we report that CAAs and breast cancer cells communicate with each other by secreting the cytokines leukemia inhibitory factor (LIF) and C-X-C subfamily chemokines (CXCLs), respectively. LIF is a pro-inflammatory cytokine secreted by CAAs, which promotes migration and invasion of breast cancer cells via the Stat3 signaling pathway. The activation of Stat3 induced the secretion of glutamic acid-leucine-arginine (ELR) motif CXCLs (CXCL1, CXCL2, CXCL3 and CXCL8) in tumor cells. Interestingly, CXCLs in turn activated the ERK1/2/NF-κB/Stat3 signaling cascade to promote the expression of LIF in CAAs. In clinical breast cancer pathology samples, the up-regulation of LIF in paracancerous adipose tissue was positively correlated with the activation of Stat3 in breast cancer. Furthermore, we verified that adipocytes enhanced lung metastasis of breast cancer cells, and the combination of EC330 (targeting LIF) and SB225002 (targeting C-X-C motility chemokine receptor 2 (CXCR2)) significantly reduced lung metastasis of breast cancer cells in vivo. Our findings reveal that the interaction of adipocytes with breast cancer cells depends on a positive feedback loop between the cytokines LIF and CXCLs, which promotes breast cancer invasion and metastasis.  相似文献   
98.
Eicosanoids are crucial downstream signals in the insect immune responses. Phospholipase A2 (PLA2) catalyzes phospholipids, the initial step in eicosanoid biosynthesis. In mammals, the biological roles of Ca2+-independent Phospholipase A2 (iPLA2) have been extensively studied; however, only a few studies have attempted to explore iPLA2 functions in insects. In this study, we identified two iPLA2 genes (designated as BmiPLA2A and BmiPLA2B) in the silkworm, Bombyx mori. BmiPLA2A had a 2427 base pair (bp) open reading frame (ORF) that coded for a protein with 808 amino acids. In contrast, BmiPLA2B had a 1731 bp ORF that coded for a protein with 576 amino acids. Domain analysis revealed that BmiPLA2A had six ankyrin repeat domains, but BmiPLA2B lacks these domains. BmiPLA2A and BmiPLA2B were transcribed widely in various tissues and developmental stages with different expression patterns. The administration of 20-hydroxyecdysone increased their expression levels in the epidermis and hemocytes. Furthermore, challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria induced the expression of BmiPLA2A and BmiPLA2B with variable degrees along with different time points. Our findings imply that BmiPLA2A and BmiPLA2B may have important biological roles in the development and innate immunity of B. mori.  相似文献   
99.
Genetically engineered mice provide an excellent tool to study the role of a particular gene in biological systems and will be increasingly used as models to understand the signal transduction mechanisms involved in ischemic preconditioning (IP). However, the phenomenon of IP has not been well characterized in this species. We therefore attempted to examine whether IP could protect isolated mouse heart against global ischemia/reperfusion (GI/R) injury. Thirty adult mice hearts were perfused at constant pressure of 55 mmHg in Langendorff mode. Following 20 min equilibration, the hearts were randomized into three groups (n = 10/each): (1) Control Group; (2) IP2.5 Group: IP with two cycles of 2.5 min GI + 2.5 min R; (3) IP5 Group: IP with 5 min GI + 5 min R. All hearts were then subjected to 20 min of GI and 30 min R (37°C). Ventricular developed force was measured by a force transducer attached to the apex. Leakage of CK and LDH was measured in coronary efflux. Infarct size was determined by tetrazolium staining. Following sustained GI/R, infarct size was significantly reduced in IP2.5 (13.8 ± 2.3%), but not in IP5 (20.1 ± 4.0%), when compared with non-preconditioned control (23.6 ± 3.8%) hearts. CK and LDH release was also reduced in both IP2.5 and IP5 groups. No significant improvement in post-ischemic ventricular contractile function was observed in either IP groups. We conclude that IP with repetitive cycles of brief GI/R is able to reduce myocardial infarct size and intracellular enzyme leakage caused by a sustained GI/R in the isolated perfused mouse heart. This anti-necrosis cardioprotection induced by IP was not associated with the amelioration of post-ischemic ventricular dysfunction.  相似文献   
100.
Oxidized low density lipoprotein (oxLDL) is believed to play a central role in atherogenesis. LDL is oxidized in the arterial intima by mechanisms that are still only partially understood. OxLDL is then taken up by macrophages through scavenger receptor-mediated endocytosis, which then leads to cellular damage, including apoptosis. The complex mechanisms by which oxLDL induces cell injury are mostly unknown. This study has demonstrated that oxLDL-induced damage of macrophages is associated with iron-mediated intralysosomal oxidative reactions, which cause partial lysosomal rupture and ensuing apoptosis. This series of events can be prevented by pre-exposing cells to the iron-chelator, desferrioxamine (DFO), whereas it is augmented by pretreating the cells with a low molecular weight iron complex. Since both DFO and the iron complex would be taken up by endocytosis, and thus directed to the lysosomal compartment, the results suggest that the normal contents of lysosomal low molecular weight iron may play an important role in oxLDL-induced cell damage, presumably by catalyzing intralysosomal fragmentation of lipid peroxides and the formation of toxic aldehydes and oxygen-centered radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号