首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1980年   1篇
  1976年   1篇
  1969年   1篇
  1930年   1篇
排序方式: 共有123条查询结果,搜索用时 93 毫秒
41.
A randomized, two-way, crossover, bioequivalence study was conducted in 26 fasting, healthy, male volunteers to compare two brands of citalopram 40 mg tablets, Citol (Abdi Ibrahim Ila? San. ve Tic A.S., Istanbul, Turkey) as a test and Cipramil (H. Lundbeck A/S, Copenhagen, Denmark) as a reference product. One tablet of either formulation was administered with low-carbonate water after 10 h of overnight fasting. After dosing, serial blood samples were collected during a period of 24 hours. Plasma samples were analysed for citalopram by a validated HPLC method. The pharmacokinetic parameters AUC0-24, AUC(0-alpha), Cmax, Tmax, K(el), T(1/2), and CL were determined from plasma concentration-time profiles for both formulations and were compared statistically to evaluate bioequivalence between the two brands of citalopram, using the statistical modules recommended by FDA. The analysis of variance (ANOVA) did not show any significant difference between the two formulations and 90% confidence intervals (CI) fell within the acceptable range for bioequivalence. Based on these statistical inferences it was concluded that the two brands exhibited comparable pharmacokinetics profiles and that Abdi Ibrahim's Citol is equivalent to Cipramil of H. Lundbeck, Copenhagen, Denmark.  相似文献   
42.
43.
44.
Homing-based gene drives use a germline source of nuclease to copy themselves at specific target sites in a genome and bias their inheritance. Such gene drives can be designed to spread and deliberately suppress populations of malaria mosquitoes by impairing female fertility. However, strong unintended fitness costs of the drive and a propensity to generate resistant mutations can limit a gene drive’s potential to spread.Alternative germline regulatory sequences in the drive element confer improved fecundity of carrier individuals and reduced propensity for target site resistance. This is explained by reduced rates of end-joining repair of DNA breaks from parentally deposited nuclease in the embryo, which can produce heritable mutations that reduce gene drive penetrance.We tracked the generation and selection of resistant mutations over the course of a gene drive invasion of a population. Improved gene drives show faster invasion dynamics, increased suppressive effect and later onset of target site resistance. Our results show that regulation of nuclease expression is as important as the choice of target site when developing a robust homing-based gene drive for population suppression.  相似文献   
45.
46.
47.
A haloalkane dehalogenase (DppA) from Plesiocystis pacifica SIR-1 was identified by sequence comparison in the NCBI database, cloned, functionally expressed in Escherichia coli, purified, and biochemically characterized. The three-dimensional (3D) structure was determined by X-ray crystallography and has been refined at 1.95 Å resolution to an R-factor of 21.93%. The enzyme is composed of an α/β-hydrolase fold and a cap domain and the overall fold is similar to other known haloalkane dehalogenases. Active site residues were identified as Asp123, His278, and Asp249 and Trp124 and Trp163 as halide-stabilizing residues. DppA, like DhlA from Xanthobacter autotrophicus GJ10, is a member of the haloalkane dehalogenase subfamily HLD-I. As a consequence, these enzymes have in common the relative position of their catalytic residues within the structure and also show some similarities in the substrate specificity. The enzyme shows high preference for 1-bromobutane and does not accept chlorinated alkanes, halo acids, or halo alcohols. It is a monomeric protein with a molecular mass of 32.6 kDa and exhibits maximum activity between 33 and 37°C with a pH optimum between pH 8 and 9. The Km and kcat values for 1-bromobutane were 24.0 mM and 8.08 s?1. Furthermore, from the 3D-structure of DppA, it was found that the enzyme possesses a large and open active site pocket. Docking experiments were performed to explain the experimentally determined substrate preferences.  相似文献   
48.
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline.  相似文献   
49.
50.
Conformational entropy is an important component of protein–protein interactions; however, there is no reliable method for computing this parameter. We have developed a statistical measure of residual backbone entropy in folded proteins by using the ?–ψ distributions of the 20 amino acids in common secondary structures. The backbone entropy patterns of amino acids within helix, sheet or coil form clusters that recapitulate the branching and hydrogen bonding properties of the side chains in the secondary structure type. The same types of residues in coil and sheet have identical backbone entropies, while helix residues have much smaller conformational entropies. We estimated the backbone entropy change for immunoglobulin complementarity-determining regions (CDRs) from the crystal structures of 34 low-affinity T-cell receptors and 40 high-affinity Fabs as a result of the formation of protein complexes. Surprisingly, we discovered that the computed backbone entropy loss of only the CDR3, but not all CDRs, correlated significantly with the kinetic and affinity constants of the 74 selected complexes. Consequently, we propose a simple algorithm to introduce proline mutations that restrict the conformational flexibility of CDRs and enhance the kinetics and affinity of immunoglobulin interactions. Combining the proline mutations with rationally designed mutants from a previous study led to 2400-fold increase in the affinity of the A6 T-cell receptor for Tax-HLAA2. However, this mutational scheme failed to induce significant binding changes in the already-high-affinity C225–Fab/huEGFR interface. Our results will serve as a roadmap to formulate more effective target functions to design immune complexes with improved biological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号