首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4437篇
  免费   332篇
  国内免费   1篇
  4770篇
  2023年   24篇
  2022年   46篇
  2021年   104篇
  2020年   82篇
  2019年   81篇
  2018年   121篇
  2017年   63篇
  2016年   145篇
  2015年   230篇
  2014年   264篇
  2013年   316篇
  2012年   424篇
  2011年   328篇
  2010年   218篇
  2009年   224篇
  2008年   247篇
  2007年   225篇
  2006年   249篇
  2005年   217篇
  2004年   217篇
  2003年   195篇
  2002年   197篇
  2001年   62篇
  2000年   46篇
  1999年   41篇
  1998年   56篇
  1997年   48篇
  1996年   42篇
  1995年   37篇
  1994年   24篇
  1993年   25篇
  1992年   26篇
  1991年   26篇
  1990年   11篇
  1989年   8篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   5篇
  1984年   8篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1979年   4篇
  1978年   8篇
  1977年   3篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1970年   2篇
排序方式: 共有4770条查询结果,搜索用时 0 毫秒
91.
Epithelial cells have a distinctive polarity based on the restricted distribution of proteins and junctional complexes along an apical-basal axis. Studying the formation of the polarized ectoderm of the Drosophila embryo has identified a number of the molecules that establish this polarity. The Crumbs (Crb) complex is one of three separate complexes that cooperate to control epithelial polarity and the formation of zonula adherens. Here we show that glaikit (gkt), a member of the phospholipase D superfamily, is essential for the formation of epithelial polarity and for neuronal development during Drosophila embryogenesis. In epithelial cells, gkt acts to localize the Crb complex of proteins to the apical lateral membrane. Loss of gkt during neuronal development leads to a severe CNS architecture disruption that is not dependent on the Crb pathway but probably results from the disrupted localization of other membrane proteins. A mutation in the human homolog of gkt causes the neurodegenerative disease spinocerebellar ataxia with neuropathy (SCAN1), making it possible that a failure of membrane protein localization is a cause of this disease.  相似文献   
92.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   
93.
Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2'O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell-cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-alpha and transforming growth factor-beta. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability.  相似文献   
94.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   
95.
96.
How populations of growing cells achieve cell-size homeostasis remains a major question in cell biology. Recent studies in rod-shaped bacteria support the “incremental rule” where each cell adds a constant length before dividing. Although this rule explains narrow cell-size distributions, its mechanism is still unknown. We show that the opportunistic pathogen Pseudomonas aeruginosa obeys the incremental rule to achieve cell-length homeostasis during exponential growth but shortens its cells when entering the stationary phase. We identify a mutant, called frik, which has increased antibiotic sensitivity, cells that are on average longer, and a fraction of filamentous cells longer than 10 μm. When growth slows due to entry in stationary phase, the distribution of frik cell sizes decreases and approaches wild-type length distribution. The rare filamentous cells have abnormally large nucleoids, suggesting that a deficiency in DNA segregation prevents cell division without slowing the exponential elongation rate.  相似文献   
97.
The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single‐step reaction involving a solvent molecule, a general base/acid, and a mono‐ or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal‐binding motif (HEXXH), which includes two metal‐binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ~130–270‐residue catalytic domains, which are usually preceded by N‐terminal pro‐segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C‐terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N‐terminal subdomain spanning a five‐stranded β‐sheet, a backing helix, and an active‐site helix. The latter contains most of the metal‐binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C‐terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met‐turn—and a C‐terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.  相似文献   
98.
Methyl 12, 12, 12-trifluorofarnesoate (MTFF) at a dose of 10 μM, stimulated in vitro juvenile hormone (JH) release in corpora allata (CA) from 6-day-old, freshly ecdysed, and 8-day-old (period of ootheca transport) adult virgin females of Blattella germanica. In addition, MTFF also induced intraglandular accumulation of JH and MF in treated CA. Trifluorofarnesoic acid (TFFA) and trifluorofarnesol (TFF) exhibited the same properties, although to a lesser extent than MTFF. The detection of MTFF in TFFA-treated CA suggested that TFFA and TFF were biotransformed into MTFF by the CA enzymatic system and that this ester might be responsible for the activity observed. Equivalent experiments carried out with farnesoic acid (FA) resulted in a more significant stimulation of JH production. This is not surprising, because exogenous FA is readily epoxidized at C10-C11 double bond and methylated to afford JH. Conversely, analytical data have shown that the C6-C7 double bond of MTFF is epoxidized by the CA enzymatic system, whereas that at C10-C11 remains practically unaltered.  相似文献   
99.
100.
The trunk wood of Aniba riparia (Nees) Mez (Lauraceae) contains flavokawin-B, (2S)-pinostrombin, (2S)-5, 7-di-O-methylpinocembrin, (2R, 3R)-5, 7-di-O-methylpinobanksin, izalpinin and 3,5, 7-tri-O-methylgalangin. Structural comparison of these flavonoids with the pyrones and neolignans, which characterized all previously examined Aniba spp., leads to a chemical classification of the genus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号