首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4410篇
  免费   331篇
  国内免费   1篇
  4742篇
  2023年   24篇
  2022年   46篇
  2021年   103篇
  2020年   82篇
  2019年   81篇
  2018年   120篇
  2017年   63篇
  2016年   144篇
  2015年   229篇
  2014年   263篇
  2013年   314篇
  2012年   424篇
  2011年   328篇
  2010年   217篇
  2009年   224篇
  2008年   247篇
  2007年   225篇
  2006年   248篇
  2005年   216篇
  2004年   216篇
  2003年   193篇
  2002年   192篇
  2001年   59篇
  2000年   46篇
  1999年   39篇
  1998年   56篇
  1997年   48篇
  1996年   42篇
  1995年   37篇
  1994年   24篇
  1993年   25篇
  1992年   26篇
  1991年   26篇
  1990年   11篇
  1989年   8篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   4篇
  1984年   8篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1970年   2篇
排序方式: 共有4742条查询结果,搜索用时 0 毫秒
151.
Viprey V  Rosenthal A  Broughton WJ  Perret X 《Genome biology》2000,1(6):research0014.1-1417

Background  

In nitrate-poor soils, many leguminous plants form nitrogen-fixing symbioses with members of the bacterial family Rhizobiaceae. We selected Rhizobium sp. NGR234 for its exceptionally broad host range, which includes more than 112 genera of legumes. Unlike the genome of Bradyrhizobium japonicum, which is composed of a single 8.7 Mb chromosome, that of NGR234 is partitioned into three replicons: a chromosome of about 3.5 Mb, a megaplasmid of more than 2 Mb (pNGR234b) and pNGR234a, a 536,165 bp plasmid that carries most of the genes required for symbioses with legumes. Symbiotic loci represent only a small portion of all the genes coded by rhizobial genomes, however. To rapidly characterize the two largest replicons of NGR234, the genome of strain ANU265 (a derivative strain cured of pNGR234a) was analyzed by shotgun sequencing.  相似文献   
152.
Abstract. We studied the effects of dibutyryl cyclic AMP (dbcAMP) on mouse limb-bud chondrogenesis at three stages of embryonic development. After 24 h of culture, limb buds with or without a covering of ectoderm were treated with 1 mM dbcAMP for 48 h and were then compared with untreated cultured limb buds. Treatment with dbcAMP enhanced cartilaginous differentiation in organ cultures of stage-17 and -19 (according to Theiler's) limb buds, although the presence of ectoderm reduced the level of dbcAMP stimulation. By stage 20, treatment with dbcAMP irreversibly inhibited cartilaginous differentiation. These results suggest that the responsiveness of mesenchymal limb-bud cells to dbcAMP is stage related. The results of histological studies as well as of analyses of DNA content and sulphated glycosaminoglycan accumulation supported the hypothesis that dbcAMP treatment induces recruitment of initially non-chondrogenic cells whose commitment explains the enhancement of cartilaginous differentiation. Limb-bud competence for chondrogenesis throughout the three developmental stages studied is also discussed.  相似文献   
153.
Aquatic environments often contain toxic heavy metals that may enter the food web via uptake by microalgae and eventually cause severe poisoning problems at higher trophic levels. The effects of Cd and Zn cations upon growth of two native green microalgal species, Scenedesmus obliquus and Desmodesmus pleiomorphus (previously isolated from a polluted site in Northern Portugal), were accordingly evaluated. Growth inhibition of the microalgal cells was determined following exposure for 96 h to several initial concentrations of aqueous solutions of either of those two metals. At the higher end of Cd and Zn experimental concentration ranges, a significant reduction in cell density was observed in the cultures; EC50 values, calculated after fitting a Weibull model to the experimental data, were 0.058 and 1.92 mg L−1 for Cd and 16.99 and 4.87 mg L−1 for Zn in the case of S. obliquus and D. pleiomorphus, respectively. One observed that S. obliquus can tolerate higher Zn concentrations than D. pleiomorphus, but the reverse holds regarding exposure to Cd.  相似文献   
154.
Nonstructural protein 5A (NS5A) is essential for hepatitis C virus (HCV) replication and constitutes an attractive target for antiviral drug development. Although structural data for its in-plane membrane anchor and domain D1 are available, the structure of domains 2 (D2) and 3 (D3) remain poorly defined. We report here a comparative molecular characterization of the NS5A-D3 domains of the HCV JFH-1 (genotype 2a) and Con1 (genotype 1b) strains. Combining gel filtration, CD, and NMR spectroscopy analyses, we show that NS5A-D3 is natively unfolded. However, NS5A-D3 domains from both JFH-1 and Con1 strains exhibit a propensity to partially fold into an α-helix. NMR analysis identifies two putative α-helices, for which a molecular model could be obtained. The amphipathic nature of the first helix and its conservation in all genotypes suggest that it might correspond to a molecular recognition element and, as such, promote the interaction with relevant biological partner(s). Because mutations conferring resistance to cyclophilin inhibitors have been mapped into NS5A-D3, we also investigated the functional interaction between NS5A-D3 and cyclophilin A (CypA). CypA indeed interacts with NS5A-D3, and this interaction is completely abolished by cyclosporin A. NMR heteronuclear exchange experiments demonstrate that CypA has in vitro peptidyl-prolyl cis/trans-isomerase activity toward some, but not all, of the peptidyl-prolyl bonds in NS5A-D3. These studies lead to novel insights into the structural features of NS5A-D3 and its relationships with CypA.  相似文献   
155.
TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18–0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28–0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23–1.36] (p = 0.12) and OR = 0.99 [0.37–2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.  相似文献   
156.
Robust replication of hepatitis C virus (HCV) in cell culture occurs only with the JFH-1 (genotype 2a) recombinant genome. The aim of this study was to develop a system for HCV infection quantification analysis and apply it for the selection of patient sera that may contain cell culture infectious viruses, particularly of the most clinically important genotype 1. Initially, a hepatoma cell line (designated Huh-7.5/EG(4A/4B)GLuc) was generated that stably expressed the enhanced green fluorescent protein (EGFP) fused in-frame to the secreted Gaussia luciferase via a recognition sequence of the viral NS3/4A protease. Upon HCV infection, NS3/4A cleaved at its signal and the Gaussia was secreted to the culture medium, thus facilitating the infection quantification. The Huh-7.5/EG(4A/4B)GLuc cell line provided a rapid and highly sensitive quantification of HCV infection in cell culture using JFH-1-derived viruses. Furthermore, the Huh-7.5/EG(4A/4B)GLuc cells were also shown to be a suitable host for the discovery of anti-HCV inhibitors by using known compounds that target distinct stages of the HCV life cycle; the Ź-factor of this assay ranged from 0.72 to 0.75. Additionally, eighty-six sera derived from HCV genotype 1b infected liver transplant recipients were screened for their in vitro infection and replication potential. Approximately 12% of the sera contained in vitro replication-competent viruses, as deduced by the Gaussia signal, real time quantitative PCR, immunofluorescence and capsid protein secretion. We conclude that the Huh-7.5/EG(4A/4B)GLuc cell line is an excellent system not only for the screening of in vitro replication-competent serum-derived viruses, but also for the subsequent cloning of recombinant isolates. Additionally, it can be utilized for high-throughput screening of antiviral compounds.  相似文献   
157.
Whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640–12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates.  相似文献   
158.
Infectious bursal disease virus (IBDV) causes an economically significant disease of chickens worldwide. Very virulent IBDV (vvIBDV) strains have emerged and induce as much as 60% mortality. The molecular basis for vvIBDV pathogenicity is not understood, and the relative contributions of the two genome segments, A and B, to this phenomenon are not known. Isolate 94432 has been shown previously to be genetically related to vvIBDVs but exhibits atypical antigenicity and does not cause mortality. Here the full-length genome of 94432 was determined, and a reverse genetics system was established. The molecular clone was rescued and exhibited the same antigenicity and reduced pathogenicity as isolate 94432. Genetically modified viruses derived from 94432, whose vvIBDV consensus nucleotide sequence was restored in segment A and/or B, were produced, and their pathogenicity was assessed in specific-pathogen-free chickens. We found that a valine (position 321) that modifies the most exposed part of the capsid protein VP2 critically modified the antigenicity and partially reduced the pathogenicity of 94432. However, a threonine (position 276) located in the finger domain of the virus polymerase (VP1) contributed even more significantly to attenuation. This threonine is partially exposed in a hydrophobic groove on the VP1 surface, suggesting possible interactions between VP1 and another, as yet unidentified molecule at this amino acid position. The restored vvIBDV-like pathogenicity was associated with increased replication and lesions in the thymus and spleen. These results demonstrate that both genome segments influence vvIBDV pathogenicity and may provide new targets for the attenuation of vvIBDVs.  相似文献   
159.
The genetic structure of bacterial populations can be related to geographical locations of isolation. In some species, there is a strong correlation between geographical distance and genetic distance, which can be caused by different evolutionary mechanisms. Patterns of ancient admixture in Helicobacter pylori can be reconstructed in concordance with past human migration, whereas in Mycobacterium tuberculosis it is the lack of recombination that causes allopatric clusters. In Campylobacter, analyses of genomic data and molecular typing have been successful in determining the reservoir host species, but not geographical origin. We investigated biogeographical variation in highly recombining genes to determine the extent of clustering between genomes from geographically distinct Campylobacter populations. Whole‐genome sequences from 294 Campylobacter isolates from North America and the UK were analysed. Isolates from within the same country shared more recently recombined DNA than isolates from different countries. Using 15 UK/American closely matched pairs of isolates that shared ancestors, we identify regions that have frequently and recently recombined to test their correlation with geographical origin. The seven genes that demonstrated the greatest clustering by geography were used in an attribution model to infer geographical origin which was tested using a further 383 UK clinical isolates to detect signatures of recent foreign travel. Patient records indicated that in 46 cases, travel abroad had occurred <2 weeks prior to sampling, and genomic analysis identified that 34 (74%) of these isolates were of a non‐UK origin. Identification of biogeographical markers in Campylobacter genomes will contribute to improved source attribution of clinical Campylobacter infection and inform intervention strategies to reduce campylobacteriosis.  相似文献   
160.
Summary The conformation of a peptide that represents antigenic site A of foot-and-mouth disease virus strain C-S8c1 (residues 136–156 of VP1; YTASARGDLAHLTTTHARHLP) has been studied by circular dichroism and compared with three analogs that reproduce amino acid substitutions at position 146 (HisArg, Gln or Asp) which affect antibody recognition. Four other peptides, incorporating replacements at position 147 predicted to maintain (LeuIle, Nle and Ala) or disrupt (LeuGly) helical structure at this site, have also been studied. In aqueous solution or in 4 M urea, the spectra of all eight peptides were typical of aperiodic conformation and independent of concentration or pH. However, upon addition of solvents such as methanol or hexafluoroisopropanol, spectral patterns evidenced significant levels (ca. 50%) of helical structure. The single residue substitutions at positions 146 and 147 caused minor to significant variations in the calculated amount of -helix of the peptides. An attempt to relate these changes in helical content to the antigenic behaviour of the peptides towards five monoclonal antibodies elicited with virus and mapping at site A could not find any straightforward correspondence between the two sets of results. The parent peptide and its His146Arg analog were also analyzed by circular dichroism in the presence of the Fab fragment of SD6, a monoclonal antibody mapping at site A and much less reactive with viruses carrying the referred mutation. Although a peptide-antibody interaction was evident from spectral changes, careful inspection of the difference spectra (peptide-Fab minus Fab) of both peptides failed to detect any significant distinction between them that could be attributed to their different immunoreactivity. While these findings do not necessarily conflict with previous reports that the interaction of antigenic site A with antibodies is mediated to some extent by the adoption of a helix structure, they suggest that, at least for C-serotype viruses, other structural features in addition to a helical conformation are critically involved in antigenic recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号