首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18095篇
  免费   1643篇
  国内免费   223篇
  2023年   114篇
  2022年   190篇
  2021年   454篇
  2020年   300篇
  2019年   324篇
  2018年   429篇
  2017年   322篇
  2016年   523篇
  2015年   854篇
  2014年   880篇
  2013年   1095篇
  2012年   1343篇
  2011年   1181篇
  2010年   761篇
  2009年   730篇
  2008年   936篇
  2007年   845篇
  2006年   782篇
  2005年   719篇
  2004年   746篇
  2003年   672篇
  2002年   640篇
  2001年   490篇
  2000年   418篇
  1999年   376篇
  1998年   223篇
  1997年   162篇
  1996年   161篇
  1995年   171篇
  1994年   134篇
  1993年   127篇
  1992年   209篇
  1991年   240篇
  1990年   167篇
  1989年   181篇
  1988年   163篇
  1987年   153篇
  1986年   131篇
  1985年   154篇
  1984年   131篇
  1983年   99篇
  1982年   80篇
  1981年   78篇
  1980年   70篇
  1979年   79篇
  1978年   84篇
  1977年   75篇
  1975年   69篇
  1974年   68篇
  1973年   59篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
DNA content analysis of insect cell lines by flow cytometry   总被引:1,自引:0,他引:1  
The DNA content of insect cell lines (6 lepidoptera, 1 coleoptera and 1 diptera) was determined by flow cytometry. The DNA profiles of the 8 cell lines tested were different. They were characterized by the presence of several peaks (2 to 7) corresponding to different ploidy levels, by differences in the fluorescence intensity of each peak and by the proportion of cells in each peak. Two cell lines (Cf124 and BmN) were constituted of 2 distinct populations of cells. The DNA profiles of the cell lines were stable among the passages and during the length of time culture. This technique was demonstrated to be useful for the detection of mixed cell lines and nucleopolyhedrovirus cell infection, using Autographa californica MNPV. The flow cytometry gives interesting results on the cell cycle and the ploidy level; it appears as a good tool for insect cell lines characterization. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
992.
This review summarizes recent advances in knowledge on the development of digestive tissues and their productions as well as mechanisms of regulation in response to age and ingested food in mammalian species (mainly bovine and porcine species). In the first two sections, changes are reported for stomach, pancreas and small intestine, and examined in relation to different situations (colostral, milk feeding and weaned periods). The implication of some regulatory substances (growth factors, gut regulatory peptides and neurohormonal substances) in regulation mechanisms is discussed over these periods. For example, the plasma pattern of several gut regulatory peptides and the expression of their specific receptors could explain certain phenomena of digestive development. Recent cellular and molecular aspects of regulation of the digestive enzyme production are also reported. Finally, an approach to interactions existing between age and ingested food is given in the last section. In conclusion, although some phenomena are well established, it is often difficult to distinguish what the age- and food-dependent events are in the development of the digestive function.  相似文献   
993.
994.
Abstract A refined prediction of the nicotinic acetylcholine receptor (nAChR) subunits' secondary structure was computed with third-generation algorithms. The four selected programs, PHD, Predator, DSC, and NNSSP, based on different prediction approaches, were applied to each sequence of an alignment of nAChR and 5-HT3 receptor subunits, as well as a larger alignment with related subunit sequences from glycine and GABA receptors. A consensus prediction was computed for the nAChR subunits through a "winner takes all" method. By integrating the probabilities obtained with PHD, DSC, and NNSSP, this prediction was filtered in order to eliminate the singletons and to more precisely establish the structure limits (only 4% of the residues were modified). The final consensus secondary structure includes nine alpha-helices (24.2% of the residues, with an average length of 13.9 residues) and 17 beta-strands (22.5% of the residues, with an average length of 6.6 residues). The large extracellular domain is predicted to be mainly composed of beta-strands, with only two helices at the amino-terminal end. The transmembrane segments are predicted to be in a mixed alpha/beta topology (with a predominance of alpha-helices), with no known equivalent in the current protein database. The cytoplasmic domain is predicted to consist of two well-conserved amphipathic helices joined together by an unfolded stretch of variable length and sequence. In general, the segments predicted to occur in a periodic structure correspond to the more conserved regions, as defined by an analysis of sequence conservation per position performed on 152 superfamily members. The solvent accessibility of each residue was predicted from the multiple alignments with PHDacc. Each segment with more than three exposed residues was assumed to be external to the core protein. Overall, these data constitute an envelope of structural constraints. In a subsequent step, experimental data relative to the extracellular portion of the complete receptor were incorporated into the model. This led to a proposed two-dimensional representation of the secondary structure in which the peptide chain of the extracellular domain winds alternatively between the two interfaces of the subunit. Although this representation is not a tertiary structure and does not lead to predictions of specific beta-beta interaction, it should provide a basic framework for further mutagenesis investigations and for fold recognition (threading) searches.  相似文献   
995.
996.
Using the MIN6 B-cell line, we investigated the hypothesis that miniglucagon, the C-terminal () fragment processed from glucagon and present in pancreatic A cells, modulates insulin release, and we analyzed its cellular mode of action. We show that, at concentrations ranging from 0.01 to 1000 pM, miniglucagon dose-dependently (ID50 = 1 pM) inhibited by 80-100% the insulin release triggered by glucose, glucagon, glucagon-like peptide-1-(7-36) amide (tGLP-1), or glibenclamide, but not that induced by carbachol. Miniglucagon had no significant effects on cellular cAMP levels. The increase in 45Ca2+ uptake induced by depolarizing agents (glucose or extracellular K+), by glucagon, or by the Ca2+channel agonist Bay K-8644 was blocked by miniglucagon at the doses active on insulin release. Electrophysiological experiments indicated that miniglucagon induces membrane hyperpolarization, probably by opening potassium channels, which terminated glucose-induced electrical activity. Pretreatment with pertussis toxin abolished the effects of miniglucagon on insulin release. It is concluded that miniglucagon is a highly potent and efficient inhibitor of insulin release by closing, via hyperpolarization, voltage-dependent Ca2+ channels linked to a pathway involving a pertussis toxin-sensitive G protein.  相似文献   
997.
Limited proteolysis experiments were performed to study conformation changes induced by ligand binding on in vitro produced wild-type and I747T mutant glucocorticoid receptors. Dexamethasone-induced conformational changes were characterized by two resistant proteolysis fragments of 30 and 27 kDa. Although dexamethasone binding affinity was only slightly altered by the I747T substitution (Roux, S., Térouanne, B., Balaguer, P., Loffreda-Jausons, N., Pons, M., Chambon, P., Gronemeyer, H., and Nicolas, J.-C. (1996) Mol. Endocrinol. 10, 1214-1226), higher dexamethasone concentrations were required to obtain the same proteolysis pattern. This difference was less marked when proteolysis experiments were conducted at 0 degrees C, indicating that a step of the conformational change after ligand binding was affected by the mutation. In contrast, RU486 binding to the wild-type receptor induced a different conformational change that was not affected by the mutation. Analysis of proteolysis fragments obtained in the presence of dexamethasone or RU486 indicated that the RU486-induced conformational change affected the C-terminal part of the ligand binding domain differently. These data suggest that the ligand-induced conformational change occurs via a multistep process. In the first step, characterized by compaction of the ligand binding domain, the mutation has no effect. The second step, which stabilizes the activated conformation and does not occur at 4 degrees C, seems to be a key element in the activation process that can be altered by the mutation. This step could involve modification of the helix H12 position, explaining why the conformation induced by RU486 is not affected by the mutation.  相似文献   
998.
Trp-Lys-Tyr-Val-D-Met (WKYMVm) is a synthetic leukocyte-activating peptide postulated to use seven-transmembrane, G protein-coupled receptor(s). In the study to characterize the receptor(s) for WKYMVm, we found that this peptide induced marked chemotaxis and calcium flux in human phagocytes. The signaling induced by WKYMVm in phagocytes was attenuated by high concentrations of the bacterial chemotactic peptide fMLP, suggesting that WKYMVm might use receptor(s) for fMLP. This hypothesis was tested by using cells over expressing genes encoding two seven-transmembrane receptors, formyl peptide receptor (FPR) and formyl peptide receptor-like 1 (FPRL1), which are with high and low affinity for fMLP, respectively. Both FPR- and FPRL1-expressing cells mobilized calcium in response to picomolar concentrations of WKYMVm. While FPRL1-expressing cells migrated to picomolar concentrations of WKYMVm, nanomolar concentrations of the peptide were required to induce migration of FPR-expressing cells. In contrast, fMLP elicited both calcium flux and chemotaxis only in FPR-expressing cells with an efficacy comparable with WKYMVm. Thus, WKYMVm uses both FPR and FPRL1 to stimulate phagocytes with a markedly higher efficacy for FPRL1. Our study suggests that FPR and FPRL1 in phagocytes react to a broad spectrum of agonists and WKYMVm as a remarkably potent agonist provides a valuable tool for studying leukocyte signaling via these receptors.  相似文献   
999.
Zou L  Jankovic J  Rowe DB  Xie W  Appel SH  Le W 《Life sciences》1999,64(15):1275-1285
Pramipexole, a novel non-ergoline dopamine (DA) agonist, has been applied successfully for treatment of Parkinson's disease (PD). We report here that pramipexole can protect dopaminergic cell line Mes23.5 against dopamine- and levodopa-induced cytotoxicity possibly through a mechanism related to antioxidant activity. In the MES 23.5 cultures, DA and L-DOPA induce a dose- and time-dependent cytotoxicity, as determined by tetrazolium salt and trypan blue assays. Furthermore, an in situ terminal deoxynucleotidyl transferase assay demonstrates that DA-induced cell death is apoptotic. Pretreatment with pramipexole in a concentration range (4-100 microM) significantly attenuates DA- or L-DOPA-induced cytotoxicity and apoptosis, an action which is not blocked by D3 antagonist U-99194 A or D2 antagonist raclopride. Pramipexole also protects MES 23.5 cells from hydrogen peroxide-induced cytotoxicity in a dose-dependent manner. In cell-free system, pramipexole can effectively inhibit the formation of melanin, an end product resulting from DA or L-DOPA oxidation. These results indicate that pramipexole exerts its neuroprotective effect possibly through a mechanism, which is independent of DA receptors but related to antioxidation or scavenging of free radicals (e.g. hydrogen peroxide). As a direct DA agonist and potentially neuroprotective agent, pramipexole remains attractive in the treatment of PD.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号