首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18095篇
  免费   1643篇
  国内免费   223篇
  2023年   114篇
  2022年   190篇
  2021年   454篇
  2020年   300篇
  2019年   324篇
  2018年   429篇
  2017年   322篇
  2016年   523篇
  2015年   854篇
  2014年   880篇
  2013年   1095篇
  2012年   1343篇
  2011年   1181篇
  2010年   761篇
  2009年   730篇
  2008年   936篇
  2007年   845篇
  2006年   782篇
  2005年   719篇
  2004年   746篇
  2003年   672篇
  2002年   640篇
  2001年   490篇
  2000年   418篇
  1999年   376篇
  1998年   223篇
  1997年   162篇
  1996年   161篇
  1995年   171篇
  1994年   134篇
  1993年   127篇
  1992年   209篇
  1991年   240篇
  1990年   167篇
  1989年   181篇
  1988年   163篇
  1987年   153篇
  1986年   131篇
  1985年   154篇
  1984年   131篇
  1983年   99篇
  1982年   80篇
  1981年   78篇
  1980年   70篇
  1979年   79篇
  1978年   84篇
  1977年   75篇
  1975年   69篇
  1974年   68篇
  1973年   59篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
951.
952.
This paper described our efforts to develop dianilinopyrimidines as novel EGFR inhibitors. All the target compounds were tested for inhibitory effects against wild type EGFR (EGFRwt) and three tumour cells, including A549, PC-3, and HepG2. Some of the compounds performed well in antitumor activities. Especially, compound 4c 2-((2-((4-(3-fluorobenzamido)phenyl)amino)-5-(trifluoromethyl) pyrimidin-4-yl)amino)-N-methylthiophene-3-carboxamide showed higher anti-tumour activities than Gefitinib. The IC50 values of compound 4c against A549, PC-3, and HepG2. reached 0.56 μM, 2.46 μM, and 2.21 μM, respectively. In addition, further studies indicated that compound 4c could induce apoptosis against A549 cells and arrest A549 cells in the G2/M phase. Molecular docking studies showed that compound 4c could closely interact with EGFR. Generally, compound 4c was the potential for developing into an anti-tumour drug.  相似文献   
953.
The combined analysis of haplotype panels with phenotype clinical cohorts is a common approach to explore the genetic architecture of human diseases. However, genetic studies are mainly based on single nucleotide variants (SNVs) and small insertions and deletions (indels). Here, we contribute to fill this gap by generating a dense haplotype map focused on the identification, characterization, and phasing of structural variants (SVs). By integrating multiple variant identification methods and Logistic Regression Models (LRMs), we present a catalogue of 35 431 441 variants, including 89 178 SVs (≥50 bp), 30 325 064 SNVs and 5 017 199 indels, across 785 Illumina high coverage (30x) whole-genomes from the Iberian GCAT Cohort, containing a median of 3.52M SNVs, 606 336 indels and 6393 SVs per individual. The haplotype panel is able to impute up to 14 360 728 SNVs/indels and 23 179 SVs, showing a 2.7-fold increase for SVs compared with available genetic variation panels. The value of this panel for SVs analysis is shown through an imputed rare Alu element located in a new locus associated with Mononeuritis of lower limb, a rare neuromuscular disease. This study represents the first deep characterization of genetic variation within the Iberian population and the first operational haplotype panel to systematically include the SVs into genome-wide genetic studies.  相似文献   
954.
Heterotrophic bacteria and phytoplankton dominate the biomass and play major roles in the biogeochemical cycles of the surface ocean. Here, we designed and tested a fast, high‐throughput and multiplexed hybridization‐based assay to detect populations of marine heterotrophic bacteria and phytoplankton based on their small subunit ribosomal DNA sequences. The assay is based on established liquid bead array technology, an approach that is gaining acceptance in biomedical research but remains underutilized in ecology. End‐labelled PCR products are hybridized to taxon‐specific oligonucleotide probes attached to fluorescently coded beads followed by flow cytometric detection. We used ribosomal DNA environmental clone libraries (a total of 450 clones) and cultured isolates to design and test 26 bacterial and 10 eukaryotic probes specific to various ribotypes and genera of heterotrophic bacteria and eukaryotic phytoplankton. Pure environmental clones or cultures were used as controls and demonstrated specificity of the probes to their target taxa. The quantitative nature of the assay was demonstrated by a significant relationship between the number of target molecules and fluorescence signal. Clone library sequencing and bead array fluorescence from the same sample provided consistent results. We then applied the assay to a 37‐day time series of coastal surface seawater samples from the Southern California Bight to examine the temporal dynamics of microbial communities on the scale of days to weeks. As expected, several bacterial phylotypes were positively correlated with total bacterial abundances and chlorophyll a concentrations, but others were negatively correlated. Bacterial taxa belonging to the same broad taxonomic groups did not necessarily correlate with one another, confirming recent results suggesting that inferring ecological role from broad taxonomic identity may not always be accurate.  相似文献   
955.
We address the issue of the potential for malignant transformation of cultured mesenchymal stromal cells (MSC) commonly used in clinical cell-therapy protocols and describe the culture conditions under which tumorigenesis is likely to be an extremely uncommon event.  相似文献   
956.
957.
958.
The partial specific volume and adiabatic compressibility of proteins reflect the hydration properties of the solvent-exposed protein surface, as well as changes in conformational states. Reverse micelles, or water-in-oil microemulsions, are protein-sized, optically-clear microassemblies in which hydration can be experimentally controlled. We explore, by densimetry and ultrasound velocimetry, three basic proteins: cytochrome c, lysozyme, and myelin basic protein in reverse micelles made of sodium bis (2-ethylhexyl) sulfosuccinate, water, and isooctane and in aqueous solvents. For comparison, we use beta-lactoglobulin (pI = 5.1) as a reference protein. We examine the partial specific volume and adiabatic compressibility of the proteins at increasing levels of micellar hydration. For the lowest water content compatible with complete solubilization, all proteins display their highest compressibility values, independent of their amino acid sequence and charge. These values lie within the range of empirical intrinsic protein compressibility estimates. In addition, we obtain volumetric data for the transition of myelin basic protein from its initially unfolded state in water free of denaturants, to a folded, compact conformation within the water-controlled microenvironment of reverse micelles. These results disclose yet another aspect of the protein structural properties observed in membrane-mimetic molecular assemblies.  相似文献   
959.
Following activation through high affinity IgE receptors (FcepsilonRI), mast cells release, within a few minutes, their granule content of inflammatory and allergic mediators. FcepsilonRI-induced degranulation is a SNARE (soluble N-ethylmaleimide attachment protein receptors)-dependent fusion process. It is regulated by Rab3D, a subfamily member of Rab GTPases. Evidence exists showing that Rab3 action is calcium-regulated although the molecular mechanisms remain unclear. To obtain an understanding of Rab3D function we have searched for Rab3D-associated effectors that respond to allergic triggering through FcepsilonRI. Using the RBL-2H3 mast cell line we detected a Ser/Thr kinase activity, termed here Rak3D (from Rab3D-associated kinase), because it was specifically co-immunoprecipitated with anti-Rab3D antibody. Rak3D activity, as measured by its auto- or transphosphorylation, was maximal in resting cells and decreased upon stimulation. The down-regulation of the observed activity was blocked with EGTA, but not with other degranulation inhibitors, suggesting that its activity functions downstream of calcium influx. We found that Rak3D phosphorylates the NH(2)-terminal regulatory domain of the t-SNARE syntaxin 4, but not syntaxin 2 or 3. The phosphorylation of syntaxin 4 decreased its binding to its partner SNAP23. Thus, we propose a novel phosphorylation-dependent mechanism by which Rab3D controls SNARE assembly in a calcium-dependent manner.  相似文献   
960.
The human tissue nonspecific alkaline phosphatase (TNAP) is found in liver, kidney, and bone. Mutations in the TNAP gene can lead to Hypophosphatasia, a rare inborn disease that is characterized by defective bone mineralization. TNAP is 74% homologous to human placental alkaline phosphatase (PLAP) whose crystal structure has been recently determined at atomic resolution (Le Du, M. H., Stigbrand, T., Taussig, M. J., Ménez, A., and Stura, E. A. (2001) J. Biol. Chem, 276, 9158-9165). The degree of homology allowed us to build a reliable TNAP model to investigate the relationship between mutations associated with hypophosphatasia and their probable consequences on the activity or the structure of the enzyme. The mutations are clustered within five crucial regions, namely the active site and its vicinity, the active site valley, the homodimer interface, the crown domain, and the metal-binding site. The crown domain and the metal-binding domain are mammalian-specific and were observed for the first time in the PLAP structure. The crown domain contains a collagen binding loop. A synchrotron radiation x-ray fluorescence study confirms that the metal in the metal-binding site is a calcium ion. Several severe mutations in TNAP occur around this calcium site, suggesting that calcium may be of critical importance for the TNAP function. The presence of this extra metal-binding site gives new insights on the controversial role observed for calcium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号