首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4410篇
  免费   330篇
  国内免费   1篇
  4741篇
  2023年   24篇
  2022年   46篇
  2021年   103篇
  2020年   82篇
  2019年   81篇
  2018年   121篇
  2017年   62篇
  2016年   144篇
  2015年   229篇
  2014年   263篇
  2013年   314篇
  2012年   424篇
  2011年   328篇
  2010年   217篇
  2009年   224篇
  2008年   247篇
  2007年   224篇
  2006年   248篇
  2005年   216篇
  2004年   216篇
  2003年   193篇
  2002年   192篇
  2001年   59篇
  2000年   46篇
  1999年   39篇
  1998年   56篇
  1997年   48篇
  1996年   42篇
  1995年   37篇
  1994年   24篇
  1993年   25篇
  1992年   26篇
  1991年   26篇
  1990年   11篇
  1989年   8篇
  1988年   11篇
  1987年   12篇
  1986年   7篇
  1985年   4篇
  1984年   8篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1970年   2篇
排序方式: 共有4741条查询结果,搜索用时 15 毫秒
61.
Syndecan-4 is a membrane-bound heparan sulfate proteoglycan that participates in cell-cell and cell-matrix interactions and modulates adhesion and migration of many cell types. Through its extracellular domain, syndecan-4 cooperates with adhesion molecules and binds matrix components relevant for cell migration. Importantly, syndecan-4 is a substrate of extracellular proteases, however the biological significance of this cleavage has not been elucidated. Here, we show that the secreted metalloprotease ADAMTS1, involved in angiogenesis and inflammatory processes, cleaves the ectodomain of syndecan-4. We further showed that this cleavage results in altered distribution of cytoskeleton components, functional loss of adhesion, and gain of migratory capacities. Using syndecan-4 null cells, we observed that ADAMTS1 proteolytic action mimics the outcome of genetic deletion of this proteoglycan with regards to focal adhesion. Our findings suggest that the shedding of syndecan-4 by ADAMTS1 disrupts cell adhesion and promotes cell migration.  相似文献   
62.
63.
64.
Sexual compatibility limits the production of cacao plantations, being an important selection criterion in breeding programs. However, the current method for characterizing compatibility, based on the frequency of flower setting after controlled pollination, is time consuming, requiring a long time to identify self-compatible individuals. The identification of molecular markers in genomic regions can be an alternative to allow early selection of self-compatible plants. The present study aimed to identify SNP markers associated with sexual compatibility in cacao, by utilizing genome-wide association (GWAS) mapping. A population of 295 individuals mostly from third-generation breeding populations, but also founder clones, was used. This population was phenotypically characterized by hand pollinating 8199 flowers and evaluating the flower retention 15 days after pollination. In addition, leaf samples of each individual were collected and DNA extracted for genotyping by sequencing, generating 5301 SNP markers after cleaning. Genome-wide association mapping analysis was performed using Synbreed, GCTA, and TASSEL softwares. Significant markers associated to incompatibility, likely in strong linkage disequilibrium, were found within a region of 196 kb, in the proximal end of chromosome 4, suggesting the existence of a major gene in that region. However, this result should be validated in a larger population, considering that only 295 trees were used here. When the SNP effects were treated as random in the estimation process, many other regions in the genome appears to be involved with sexual incompatibility in cacao. Candidate genes were found not only in the proximal end of chromosome 4 but also spread in several other regions of the genome.  相似文献   
65.
66.
Several organochlorinated pesticides including DDT, PCBs and dieldrin have been reported to cause immune suppression and increase susceptibility to infection in animals. Often this manifestation is accompanied by atrophy of major lymphoid organs. It has been suggested that increased apoptotic cell death leading to altered T-B cell ratios, and loss of regulatory cells in critical numbers leads to perturbations in immune function. The major objective of our study was to define the mechanism by which endosulfan, an organochlorinated pesticide, induces human T-cell death using Jurkat, a human T-cell leukemic cell line, as an in vitro model. We exposed Jurkat cells to varying concentrations of endosulfan for 0-48 h and analyzed biochemical and molecular features characteristic of T-cell apoptosis. Endosulfan lowered cell viability and inhibited cell growth in a dose- and time-dependent manner. DAPI staining was used to enumerate apoptotic cells and we observed that endosulfan at 10-200 M induced a significant percentage of cells to undergo apoptotic cell death. At 48 h, more than 90% cells were apoptotic with 50 M of endosulfan. We confirmed these observations using both DNA fragmentation and annexin-V binding assays. It is now widely being accepted that mitochondria undergo major changes early during the apoptotic process. We examined mitochondrial transmembrane potential (m) in endosulfan treated cells to understand the role of the mitochondria in T-cell apoptosis. Within 30 min of chemical exposure, a significant percentage of cells exhibited a decreased incorporation of DiOC6(3), a cationic lipophilic dye into mitochondria indicating the disruption of m. This drop in m was both dose- and time-dependent and correlated well with other parameters of apoptosis. We also examined whether this occurred by the down regulation of bcl-2 protein expression that is likely to increase the susceptibility of Jurkat cells to endosulfan toxicity. Paradoxically, the intracellular expression of bcl-2 protein was elevated in a dose dependent manner suggesting endosulfan-induced apoptosis occurred by a non-bcl-2 pathway. Based on these data, as well as those reported elsewhere, we propose the following sequence of events to account for T-cell apoptosis induced by endosulfan: uncoupling of oxidative phosphorylation excess ROS production GSH depletion oxidative stress disruption of m release of cytochrome C and other apoptosis related proteins to cytosol apoptosis. This study reports for the first time that endosulfan can induce apoptosis in a human T-cell leukemic cell line which may have direct relevance to loss of T cells and thymocytes in vivo. Furthermore, our data strongly support a role of mitochondrial dysfunction and oxidative stress in endosulfan toxicity.  相似文献   
67.
68.
The human exploitation of land resources (land use) has been considered the major factor responsible for changes in biodiversity within terrestrial ecosystems given that it affects directly the distribution of the fauna. Reptiles are known to be particularly sensitive to habitat change due to their ecological constraints. Here, the impact of land use on reptile diversity was analysed, choosing Catalonia (NE Iberia) as a case study. This region provides a suitable scenario for such a biogeographical study since it harbours: 1) a rich reptile fauna; 2) a highly diverse environment showing strong variation in those variables usually shaping reptile distributions; and 3) good species distribution data. Potential species richness was calculated, using ecological modelling techniques (Ecological Niche Factor Analysis – ENFA). The subtraction of the observed from the potential species richness was the dependent variable in a backwards multiple linear regression, using land use variables. Agriculture was the land use with the strongest relation with the non-fulfilment of the potential species richness, indicating a trend towards a deficit of biodiversity. Deciduous forest was the only land use negatively related with the subtracted species richness. Results indicate a clear relationship between land use and biodiversity at a mesoscale. This finding represents an important baseline for conservation guidelines within the habitat change framework because it has been achieved at the same spatial scale of chorological studies and management policies.  相似文献   
69.
Recently, it was observed that reverse-translocated cytosolic PrP and PrP expressed in the cytosol induce rapid death in neurons (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). In this study, we investigated whether accumulation of prion protein (PrP) in the cytosol is toxic to human neurons in primary culture. We show that in these neurons, a single PrP isoform lacking signal peptide accumulates in the cytosol of neurons treated with epoxomicin, a specific proteasome inhibitor. Therefore, endogenously expressed PrP is subject to the endoplasmic reticulum-associated degradation (ERAD) pathway and is degraded by the proteasome in human primary neurons. In contrast to its toxicity in N2a cells, reverse-translocated PrP (ERAD-PrP) is not toxic even when neurons are microinjected with cDNA constructs to overexpress either wild-type PrP or mutant PrPD178N. We found that ERAD-PrP in human neurons remains detergent-soluble and proteinase K-sensitive, in contrast to its detergent-insoluble and proteinase K-resistant state in N2a cells. Furthermore, not only is microinjection of a cDNA construct expressing CyPrP not toxic, it protects these neurons against Bax-mediated cell death. We conclude that in human neurons, ERAD-PrP is not converted naturally into a form reminiscent of scrapie PrP and that PrP located in the cytosol retains its protective function against Bax. Thus, it is unlikely that simple accumulation of PrP in the cytosol can cause neurodegeneration in prion diseases.  相似文献   
70.
The alpha-amylase from Bacillus licheniformis is the most widely used enzyme in the starch industry owing to its hyperthermostability, converting starch to medium-sized oligosaccharides. Based on sequence alignment of homologous amylases, we found a semi-conserved sequence pattern near the active site between transglycosidic and hydrolytic amylases, which suggested that hydrophobicity may play a role in modifying the transglycosylation/hydrolysis ratio. Based on this analysis, we replaced residue Val286 by Phe and Tyr in Bacillus licheniformis alpha-amylase. Surprisingly, the two resultant mutant enzymes, Val286Phe and Val286Tyr, showed two different behaviors. Val286Tyr mutant was 5-fold more active for hydrolysis of starch than the wild-type enzyme. In contrast, the Val286Phe mutant, differing only by one hydroxyl group, was 3-fold less hydrolytic than the wild-type enzyme and apparently had a higher transglycosylation/hydrolysis ratio. These results are discussed in terms of affinity of subsites, hydrophobicity and electrostatic environment in the active site. The engineered enzyme reported here may represent an attractive alternative for the starch transformation industries as it affords direct and substantial material savings and requires no process modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号