首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13213篇
  免费   1355篇
  国内免费   2733篇
  2024年   66篇
  2023年   281篇
  2022年   570篇
  2021年   822篇
  2020年   658篇
  2019年   797篇
  2018年   676篇
  2017年   446篇
  2016年   635篇
  2015年   960篇
  2014年   1156篇
  2013年   1127篇
  2012年   1362篇
  2011年   1213篇
  2010年   831篇
  2009年   745篇
  2008年   835篇
  2007年   730篇
  2006年   642篇
  2005年   539篇
  2004年   508篇
  2003年   407篇
  2002年   297篇
  2001年   177篇
  2000年   158篇
  1999年   131篇
  1998年   101篇
  1997年   73篇
  1996年   56篇
  1995年   60篇
  1994年   38篇
  1993年   25篇
  1992年   37篇
  1991年   18篇
  1990年   28篇
  1989年   16篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   10篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1981年   5篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
101.
102.
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class II hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.  相似文献   
103.
QTL pyramiding for producing nutritious and safe rice grains   总被引:1,自引:0,他引:1  
正Breeding of rice varieties that are enriched with essential micronutrients and simultaneously have reduced levels of toxic elements in grains is largely unexplored in rice breeding practice. In this issue of JIPB, Liu et al.(2020)developed two rice lines with a low level of cadmium and simultaneously high levels of zinc or selenium accumulation in the grains, thus providing elite genetic materials for breeding rice varieties that are important for addressing mineral malnutrition and ensuring food safety.m entary  相似文献   
104.
Rice is a major source of cadmium(Cd) intake for Asian people. Indica rice usually accumulates more Cd in shoots and grains than Japonica rice. However, underlying genetic bases for differential Cd accumulation between Indica and Japonica rice are still unknown. In this study, we cloned a quantitative trait locus(QTL) grain Cd concentration on chromosome 7(GCC7) responsible for differential grain Cd accumulation between two rice varieties by performing QTL analysis and map-based cloning. We found that the two GCC7 alleles, GCC7~(PA64s) and GCC7~(93-11), had different promoter activity of OsHMA3,leading to different OsHMA3 expression and different shoot and grain Cd concentrations. By analyzing the distribution of different haplotypes of GCC7 among diverse rice accessions, we discovered that the high and low Cd accumulation alleles, namely GCC7~(93-11) and GCC7~(PA64s), were preferentially distributed in Indica and Japonica rice,respectively. We further showed that the GCC7~(PA64s)allele can be used to replace the GCC7~(93-11) allele in the super cultivar 93-11 to reduce grain Cd concentration without adverse effect on agronomic traits. Our results thus reveal that the QTL GCC7 with sequence variation in the OsHMA3 promoter is an important determinant controlling differential grain Cd accumulation between Indica and Japonica rice.  相似文献   
105.
The neonatal heart completely regenerates after apical resection (AR), providing a desirable research model to study the mechanism of cardiac regeneration and cardiomyocyte proliferation. However, AR-induced neonatal heart regenerative phenomenon is controversial due to the variation of operative details in different laboratories. Here, we provide an optimized AR operation procedure with stable regeneration and high survival rate by achieving heart exposure, normalizing myocardium cut-offs, and reducing operation duration. We also established a whole-heart-slice approach to estimate the myocardial regeneration after the AR operation, which ensures no false-negative/positive results. The combination of the optimized AR operation and the whole-heart-slice analysis provides a stable system to study neonatal heart regeneration and cardiomyocyte proliferation in situ.  相似文献   
106.
107.
Cancer stem cells (CSCs) are a source of tumour recurrence in patients with nasopharyngeal carcinoma (NPC); however, the function of microRNA‐124 (miR‐124) in NPC CSCs has not been clearly defined. In this study, we investigated the role of miR‐124 in NPC CSCs. qRT‐PCR was performed to measure miR‐124 expression in NPC tissues and cell lines and the effects of miR‐124 on stem‐like properties and radiosensitivity of NPC cells measured. Luciferase reporter assays and rescue experiments were used to investigate the interaction of miR‐124 with the 3′UTR of junctional adhesion molecule A (JAMA). Finally, we examined the effects of miR‐124 in an animal model and clinical samples. Down‐regulation of miR‐124 was detected in cancer tissues and was inversely associated with tumour stage and lymph node metastasis. Overexpression of miR‐124 inhibited stemness properties and enhanced radiosensitivity of NPC cells in vitro and in vivo via targeting JAMA. Up‐regulation of miR‐124 was correlated with superior overall survival of patients with NPC. Our study demonstrates that miR‐124 can inhibit stem‐like properties and enhance radiosensitivity by directly targeting JAMA in NPC. These findings provide novel insights into the molecular mechanisms underlying therapy failure in NPC.  相似文献   
108.
Farnesyltransferase (FTase) is an important enzyme that catalyses the modification of protein isoprene downstream of the mevalonate pathway. Previous studies have shown that the tissue of the heart in the suprarenal abdominal aortic coarctation (AAC) group showed overexpression of FTaseβ (FNTB) and the activation of the downstream protein Ras was enhanced. FTase inhibitor (FTI) can alleviate myocardial fibrosis and partly improve cardiac remodelling in spontaneously hypertensive rats. However, the exact role and mechanism of FTase in myocardial hypertrophy and remodelling are not fully understood. Here, we used recombinant adenovirus to transfect neonatal rat ventricular cardiomyocytes to study the effect of FNTB overexpression on myocardial remodelling and explore potential mechanisms. The results showed that overexpression of FNTB induces neonatal rat ventricular myocyte hypertrophy and reduces the survival rate of cardiomyocytes. FNTB overexpression induced a decrease in mitochondrial membrane potential and increased apoptosis in cardiomyocytes. FNTB overexpression also promotes autophagosome formation and the accumulation of autophagy substrate protein, LC3II. Transmission electron microscopy (TEM) and mCherry‐GFP tandem fluorescent‐tagged LC3 (tfLC3) showed that FNTB overexpression can activate autophagy flux by enhancing autophagosome conversion to autophagolysosome. Overactivated autophagy flux can be blocked by bafilomycin A1. In addition, salirasib (a Ras farnesylcysteine mimetic) can alleviate the hypertrophic phenotype of cardiomyocytes and inhibit the up‐regulation of apoptosis and autophagy flux induced by FNTB overexpression. These results suggest that FTase may have a potential role in future treatment strategies to limit the adverse consequences of cardiac hypertrophy, cardiac dysfunction and heart failure.  相似文献   
109.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号