首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51014篇
  免费   4244篇
  国内免费   3638篇
  2024年   67篇
  2023年   527篇
  2022年   1308篇
  2021年   2401篇
  2020年   1531篇
  2019年   1917篇
  2018年   1792篇
  2017年   1372篇
  2016年   2021篇
  2015年   3020篇
  2014年   3597篇
  2013年   3843篇
  2012年   4447篇
  2011年   4161篇
  2010年   2432篇
  2009年   2259篇
  2008年   2536篇
  2007年   2365篇
  2006年   2004篇
  2005年   1742篇
  2004年   1474篇
  2003年   1347篇
  2002年   1161篇
  2001年   1082篇
  2000年   958篇
  1999年   928篇
  1998年   551篇
  1997年   558篇
  1996年   553篇
  1995年   466篇
  1994年   462篇
  1993年   362篇
  1992年   524篇
  1991年   454篇
  1990年   393篇
  1989年   307篇
  1988年   282篇
  1987年   237篇
  1986年   159篇
  1985年   217篇
  1984年   137篇
  1983年   127篇
  1982年   95篇
  1981年   72篇
  1980年   63篇
  1979年   88篇
  1978年   73篇
  1977年   49篇
  1976年   54篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   
992.
Zhang  Ziyi  Tang  Shengjie  Gui  Weiwei  Lin  Xihua  Zheng  Fenping  Wu  Fang  Li  Hong 《Journal of physiology and biochemistry》2020,76(2):317-328

Podocyte injury plays a key role in the occurrence and development of kidney diseases. Decreased autophagic activity in podocyte is closely related to its injury and the occurrence of proteinuria. Liver X receptors (LXRs), as metabolic nuclear receptors, participate in multiple pathophysiological processes and express in several tissues, including podocytes. Although the functional roles of LXRs in the liver, adipose tissue and intestine are well established; however, the effect of LXRs on podocytes function remains unclear. In this study, we used mouse podocytes cell line to investigate the effects of LXR activation on podocytes autophagy level and related signaling pathway by performing Western blotting, RT-PCR, GFP-mRFP-LC3 transfection, and immunofluorescence staining. Then, we tested this effect in STZ-induced diabetic mice. Transmission electron microscopy and immunohistochemistry were employed to explore the effects of LXR activation on podocytes function and autophagic activity. We found that LXR activation could inhibit autophagic flux through blocking the formation of autophagosome in podocytes in vitro which was possibly achieved by affecting AMPK, mTOR, and SIRT1 signaling pathways. Furthermore, LXR activation in vivo induced autophagy suppression in glomeruli, leading to aggravated podocyte injury. In summary, our findings indicated that activation of LXRs induced autophagy suppression, which in turn contributed to the podocyte injury.

  相似文献   
993.
Wang  Haili  Xu  Yuanyuan  Xu  Aiqing  Wang  Xinghua  Cheng  Lijun  Lee  Sharen  Tse  Gary  Li  Guangping  Liu  Tong  Fu  Huaying 《Journal of physiology and biochemistry》2020,76(4):637-653
Journal of Physiology and Biochemistry - Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the...  相似文献   
994.
Wang  Ling  Zhang  Xuemei  Wu  Guangying  Qi  Yuhong  Zhang  Jinghui  Yang  Jing  Wang  Hong  Xu  Wenchun 《Journal of microbiology (Seoul, Korea)》2020,58(4):330-339

Streptococcus pneumoniae is a Gram-positive pathogen with high morbidity and mortality globally but some of its pathogenesis remains unknown. Previous research has provided evidence that aminopeptidase N (PepN) is most likely a virulence factor of S. pneumoniae. However, its role in S. pneumoniae virulence and its interaction with the host remains to be confirmed. We generated a pepN gene deficient mutant strain and found that its virulence for mice was significantly attenuated as were in vitro adhesion and invasion of host cells. The PepN protein could induce a strong innate immune response in vivo and in vitro and induced secretion of IL-6 and TNF-α by primary peritoneal macrophages via the rapid phosphorylation of MAPK and PI3K/AKT signaling pathways and this was confirmed using specific pathway inhibitors. In conclusion, PepN is a novel virulence factor that is essential for the virulence of S. pneumoniae and induces host innate immunity via MAPK and PI3K/AKT signaling.

  相似文献   
995.
Phosphodiesterase (PDE)‐mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3‐isobutyl‐1‐methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV‐stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double‐strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV‐stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.  相似文献   
996.
Du  Xuemei  Fang  Ting  Liu  Yan  Huang  Liying  Wang  Xiaoli  Zhang  Jie  Cui  Yangbo  Zang  Maosen  Wang  Guoying  Fu  Junjie  Liu  Yunjun 《In vitro cellular & developmental biology. Plant》2020,56(2):159-168
In Vitro Cellular & Developmental Biology - Plant - Callus induction in plants is similar to pluripotent stem cell induction in animals and can incite global changes in gene expression....  相似文献   
997.
998.
In Vitro Cellular & Developmental Biology - Plant - Calycosin-7-O-β-D-glucoside (CG), a methoxylated isoflavonoid in Astragalus membranaceus Fisch. (Bunge), has a wide range of biological...  相似文献   
999.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   
1000.
To investigate the roles of tripartite motif containing 52 (TRIM52) in human hepatic fibrosis in vitro, human hepatic stellate cell line LX‐2 cells were transfected with hepatitis B virus (HBV) replicon to establish HBV‐induced fibrosis in LX‐2 cells, and then treated with small interfering RNA‐mediated knockdown of TRIM52 (siTRIM52). LX‐2 cells without HBV replicon transfection were treated with lentiviruses‐mediated overexpression of TRIM52 and phosphatase magnesium dependent 1A (PPM1A). Fibrosis response of LX‐2 cells were assessed by the production of hydroxyproline (Hyp) and collagen I/III, as well as protein levels of α‐smooth muscle actin (α‐SMA). PPM1A and phosphorylated (p)‐Smad2/3 were measured to assess the mechanism. The correlation between TRIM52 and PPM1A was determined using co‐immunoprecipitation, and whether and how TRIM52 regulated the degradation of PPM1A were determined by ubiquitination assay. Our data confirmed HBV‐induced fibrogenesis of LX‐2 cells, as evidenced by significant increase in Hyp and collagen I/III and α‐SMA, which was associated with reduction of PPM1A and elevation of transforming growth factor‐β (TGF‐β), p‐Smad2/3, and p‐Smad3L. However, those changes induced by HBV were significantly attenuated with additional siTRIM52 treatment. Similar to HBV, overexpression of TRIM52 exerted promoted effect in the fibrosis of LX‐2 cells. Interestingly, TRIM52 induced the fibrogenesis of LX‐2 cells and the activation of TGF‐β/Smad pathway were significantly reversed by PPM1A overexpression. Furthermore, our data confirmed TRIM52 as a deubiquitinase that influenced the accumulation of PPM1A protein, and subsequently regulated the fibrogenesis of LX‐2 cells. TRIM52 was a fibrosis promoter in hepatic fibrosis in vitro, likely through PPM1A‐mediated TGF‐β/Smad pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号