首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13193篇
  免费   1383篇
  国内免费   3492篇
  2024年   73篇
  2023年   325篇
  2022年   657篇
  2021年   903篇
  2020年   724篇
  2019年   806篇
  2018年   691篇
  2017年   564篇
  2016年   699篇
  2015年   882篇
  2014年   1167篇
  2013年   1080篇
  2012年   1380篇
  2011年   1238篇
  2010年   803篇
  2009年   815篇
  2008年   857篇
  2007年   789篇
  2006年   637篇
  2005年   530篇
  2004年   446篇
  2003年   373篇
  2002年   321篇
  2001年   217篇
  2000年   218篇
  1999年   162篇
  1998年   83篇
  1997年   88篇
  1996年   66篇
  1995年   47篇
  1994年   49篇
  1993年   29篇
  1992年   37篇
  1991年   43篇
  1990年   44篇
  1989年   46篇
  1988年   18篇
  1987年   25篇
  1986年   25篇
  1985年   20篇
  1984年   6篇
  1983年   23篇
  1982年   15篇
  1981年   10篇
  1980年   3篇
  1979年   6篇
  1977年   5篇
  1973年   3篇
  1950年   3篇
  1940年   2篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
131.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
132.
Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.  相似文献   
133.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
134.
Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm?2 (comparing to 151.5 mW cm?2 of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.  相似文献   
135.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
136.
Although 2D Ti3C2Tx is a good candidate for supercapacitors, the restacking of nanosheets hinders the ion transport significantly at high scan rates, especially under practical mass loading (>10 mg cm?2) and thickness (tens of microns). Here, Ti3C2Tx‐NbN hybrid film is designed by self‐assembling Ti3C2Tx with 2D arrays of NbN nanocrystals. Working as an interlayer spacer of Ti3C2Tx, NbN facilitates the ion penetration through its 2D porous structure; even at extremely high scan rates. The hybrid film shows a thickness‐independent rate performance (almost the same rate capabilities from 2 to 20 000 mV s?1) for 3 and 50 µm thick electrodes. Even a 109 µm thick Ti3C2Tx‐NbN electrode shows a better rate performance than 25 µm thick pure Ti3C2Tx electrodes. This method may pave a way to controlling ion transport in electrodes composed of 2D conductive materials, which have potential applications in high‐rate energy storage and beyond.  相似文献   
137.
Rechargeable aqueous Zn/MnO2 batteries are very attractive large‐scale energy storage technologies, but still suffer from limited cycle life and low capacity. Here the novel adoption of a near‐neutral acetate‐based electrolyte (pH ≈ 6) is presented to promote the two‐electron Mn4+/Mn2+ redox reaction and simultaneously enable a stable Zn anode. The acetate anion triggers a highly reversible MnO2/Mn2+ reaction, which ensures high capacity and avoids the issue of structural collapse of MnO2. Meanwhile, the anode‐friendly electrolyte enables a dendrite‐free Zn anode with outstanding stability and high plating/stripping Coulombic efficiency (99.8%). Hence, a high capacity of 556 mA h g?1, a lifetime of 4000 cycles without decay, and excellent rate capability up to 70 mA cm?2 are demonstated in this new near‐neutral aqueous Zn/MnO2 battery by simply manipulating the salt anion in the electrolyte. The acetate anion not only modifies the surface properties of MnO2 cathode but also creates a highly compatible environment for the Zn anode. This work provides a new opportunity for developing high‐performance Zn/MnO2 and other aqueous batteries based on the salt anion chemistry.  相似文献   
138.
Ocean wave energy is a promising renewable energy source, but harvesting such irregular, “random,” and mostly ultra‐low frequency energies is rather challenging due to technological limitations. Triboelectric nanogenerators (TENGs) provide a potential efficient technology for scavenging ocean wave energy. Here, a robust swing‐structured triboelectric nanogenerator (SS‐TENG) with high energy conversion efficiency for ultra‐low frequency water wave energy harvesting is reported. The swing structure inside the cylindrical TENG greatly elongates its operation time, accompanied with multiplied output frequency. The design of the air gap and flexible dielectric brushes enable mininized frictional resistance and sustainable triboelectric charges, leading to enhanced robustness and durability. The TENG performance is controlled by external triggering conditions, with a long swing time of 88 s and a high energy conversion efficiency, as well as undiminished performance after continuous triggering for 4 00 000 cycles. Furthermore, the SS‐TENG is demonstrated to effectively harvest water wave energy. Portable electronic devices are successfully powered for self‐powered sensing and environment monitoring. Due to the excellent performance of the distinctive mechanism and structure, the SS‐TENG in this work provides a good candidate for harvesting blue energy on a large scale.  相似文献   
139.
目的:探讨莫西沙星联合用药方案对耐多药肺结核(MDR-TB)患者血清游离氨基酸和免疫功能的影响。方法:选取2015年9月到2018年1月期间我院收治的90例MDR-TB患者,根据乱数表法将患者分为研究组(n=45)、对照组(n=45),其中对照组给予左氧氟沙星联合常规化疗治疗,研究组则给予莫西沙星联合常规化疗治疗,比较两组临床疗效、痰菌转阴率、病灶吸收率、空洞闭合率、血清游离氨基酸和免疫功能,记录两组治疗期间不良反应情况。结果:研究组治疗18个月后的临床总有效率为71.11%(32/45),高于对照组的46.67%(21/45)(P0.05)。研究组治疗18个月后痰菌转阴率、病灶吸收率、空洞闭合率均较对照组高(P0.05)。两组患者治疗18个月后CD4+、免疫球蛋白A(Ig A)、免疫球蛋白G(Ig G)均升高,CD8+降低(P0.05),研究组治疗18个月后CD4+、Ig A、Ig G高于对照组,而CD8+低于对照组(P0.05)。两组治疗18个月后缬氨酸、谷氨酸均升高,且研究组高于对照组(P0.05)。两组患者总不良反应发生率比较无明显差异(P0.05)。结论:莫西沙星联合常规化疗治疗MDR-TB的疗效确切,可有效改善患者血清游离氨基酸水平,提高机体免疫功能,同时不增加不良反应发生率。  相似文献   
140.
目的:研究辛伐他汀对烟雾吸入性肺损伤大鼠炎性因子及氧化应激反应的影响。方法:选取60只清洁级SD大鼠,将其按照随机抽签法分成正常组、盐水组以及辛伐他汀组,每组各20只。盐水组与辛伐他汀组大鼠均制备发烟罐烟雾吸入性肺损伤模型,建模成功后30 min,辛伐他汀组大鼠予以50 mg/kg剂量的辛伐他汀灌胃,盐水组则予以等量的生理盐水灌胃,正常大鼠予以正常饲养处理。采用酶联免疫法检测血清、肺泡灌洗液中炎症因子[包括白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)]及氧化应激反应指标[包括超氧化物歧化酶(SOD)、丙二醛(MDA)]水平。结果:盐水组、辛伐他汀组大鼠血清、肺泡灌洗液中IL-6、TNF-α水平均高于正常组,且辛伐他汀组大鼠上述各项指标低于盐水组(均P<0.05)。盐水组、辛伐他汀组大鼠血清、肺泡灌洗液中SOD水平低于正常组,辛伐他汀组明显高于盐水组(均P<0.05),盐水组、辛伐他汀组大鼠血清、肺泡灌洗液中MDA水平高于正常组,辛伐他汀组明显低于盐水组(均P<0.05)。结论:辛伐他汀对烟雾吸入性肺损伤大鼠的炎性因子具有明显的改善作用,且有利于减轻大鼠的氧化应激反应程度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号