首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21868篇
  免费   2167篇
  国内免费   3926篇
  2024年   83篇
  2023年   378篇
  2022年   722篇
  2021年   1142篇
  2020年   859篇
  2019年   1043篇
  2018年   1006篇
  2017年   743篇
  2016年   942篇
  2015年   1397篇
  2014年   1761篇
  2013年   1764篇
  2012年   2177篇
  2011年   2019篇
  2010年   1325篇
  2009年   1281篇
  2008年   1410篇
  2007年   1301篇
  2006年   1099篇
  2005年   939篇
  2004年   800篇
  2003年   662篇
  2002年   596篇
  2001年   418篇
  2000年   400篇
  1999年   313篇
  1998年   220篇
  1997年   179篇
  1996年   166篇
  1995年   104篇
  1994年   132篇
  1993年   75篇
  1992年   93篇
  1991年   74篇
  1990年   68篇
  1989年   47篇
  1988年   40篇
  1987年   27篇
  1986年   19篇
  1985年   28篇
  1984年   15篇
  1983年   20篇
  1982年   19篇
  1981年   4篇
  1980年   5篇
  1978年   5篇
  1973年   5篇
  1968年   3篇
  1965年   8篇
  1950年   4篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
841.
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll‐setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up‐regulated the expression of drought‐related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought‐resistant transgenic plants.  相似文献   
842.
Plant stature is one important factor that affects the productivity of peach orchards. However, little is known about the molecular mechanism(s) underlying the dwarf phenotype of peach tree. Here, we report a dwarfing mechanism in the peach cv. FenHuaShouXingTao (FHSXT). The dwarf phenotype of ‘FHSXT’ was caused by shorter cell length compared to the standard cv. QiuMiHong (QMH). ‘FHSXT’ contained higher endogenous GA levels than did ‘QMH’ and did not response to exogenous GA treatment (internode elongation). These results indicated that ‘FHSXT’ is a GA‐insensitive dwarf mutant. A dwarf phenotype‐related single nucleotide mutation in the gibberellic acid receptor GID1 was identified in ‘FHSXT’ (GID1cS191F), which was also cosegregated with dwarf phenotype in 30 tested cultivars. GID1cS191F was unable to interact with the growth‐repressor DELLA1 even in the presence of GA. ‘FHSXT’ accumulated a higher level of DELLA1, the degradation of which is normally induced by its interaction with GID1. The DELLA1 protein level was almost undetectable in ‘QMH’, but not reduced in ‘FHSXT’ after GA3 treatment. Our results suggested that a nonsynonymous single nucleotide mutation in GID1c disrupts its interaction with DELLA1 resulting in a GA‐insensitive dwarf phenotype in peach.  相似文献   
843.
844.
845.
846.
The Pleistocene climatic oscillations had profound effects on the demographic history and genetic diversification of plants in arid north-west China where some glacial refugia have been recognized. The genus Ixiolirion comprises three species, of which two, I. tataricum and I. songaricum (endemic), occur in China. In some locations they are sympatric. We investigated their population structure and population history in response to past climatic change using a sample of 619 individuals in 34 populations with nITS and ptDNA sequences. A significant genetic divergence between the two species was supported by a high level of pairwise genetic differentiation, very low gene flow, and phylogenetic analysis showing that I. songaricum haplotypes were monophyletic, whereas those of I. tataricum were polyphyletic. We found significant differentiation and phylogeographic structure in both species. The split of the two species was dated to the late Miocene (~7?Ma), but deep divergence occurred in the mid-late Quaternary. A similar haplotype distribution pattern was found in both species: one to two dominant haplotypes across most populations, with unique haplotypes in a few populations or a geographic group. The genetic diversity, haplotype number, and haplotype diversity decreased from the Yili Valley to the central Tianshan and Barluk Mountains. Additionally, ptDNA analysis showed that I. tataricum diversified in the eastern Tianshan and Barluk Mountains, which might be due to physical barriers to long distance seed dispersal such as desert. In conclusion, our results indicated that the Yili Valley was likely a glacial refuge for Ixiolirion in China, with postglacial dispersal from the Yili Valley eastward to the eastern Tianshan Mountains, and northward to the Barluk Mountains. The climatic changes in the Miocene and Pleistocene and geographic barriers are important factors driving species divergence and differentiation of Ixiolirion and other taxa.  相似文献   
847.
Acrodysostosis is an extremely rare disorder at birth, that is, characterized by skeletal dysplasia with short stature and midfacial hypoplasia, which has been reported to be caused by PDE4D and PRKAR1A gene mutations. Here, a Chinese boy with acrodysostosis, ventricular septal defect, and pulmonary hypertension was recruited for our study, and his clinical and biochemical characteristics were analyzed. A novel de novo heterozygous missense mutation (NM_001104631: c.2030A>C, p.Tyr677Ser) of the PDE4D gene was detected by whole exome sequencing and confirmed by Sanger sequencing. The c.2030A>C (p.Tyr677Ser) variant was located in exon 15 of the PDE4D gene, predicted to be damaging by a functional prediction program and shown to be highly conserved among many species. Further functional analysis showed that the p.Tyr677Ser substitution changes the function of the PDE4D protein, affects its subcellular localization in transfected cells, increases PDE4 activity in the regulation of cAMP signaling and affects cell proliferation. Our study identified a novel de novo PDE4D mutation in acrodysostosis of Chinese origin that not only contributes a deeper appreciation of the phenotypic characteristics of patients with PDE4D mutations but also expands the spectrum of PDE4D mutations.  相似文献   
848.
849.
850.
Lithium‐sulfur batteries (LSBs) have been regarded as a competitive candidate for next‐generation electrochemical energy‐storage technologies due to their merits in energy density. The sluggish redox kinetics of the electrochemistry and the high solubility of polysulfides during cycling result in insufficient sulfur utilization, severe polarization, and poor cyclic stability. Herein, sulfiphilic few‐layered MoSe2 nanoflakes decorated rGO (MoSe2@rGO) hybrid has been synthesized through a facile hydrothermal method and for the first time, is used as a conceptually new‐style sulfur host for LSBs. Specifically, MoSe2@rGO not only strongly interacts with polysulfides but also dynamically strengthens polysulfide redox reactions. The polarization problem is effectively alleviated by relying on the sulfiphilic MoSe2. Moreover, MoSe2@rGO is demonstrated to be beneficial for the fast nucleation and uniform deposition of Li2S, contributing to the high discharge capacity and good cyclic stability. A high initial capacity of 1608 mAh g?1 at 0.1 C, a slow decay rate of 0.042% per loop at 0.25 C, and a high reversible capacity of 870 mAh g?1 with areal sulfur loading of 4.2 mg cm?2 at 0.3 C are obtained. The concept of introducing sulfiphilic transition‐metal selenides into the LSBs system can stimulate engineering of novel architectures with enhanced properties for various energy‐storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号