首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16475篇
  免费   1498篇
  国内免费   2455篇
  20428篇
  2024年   69篇
  2023年   326篇
  2022年   639篇
  2021年   963篇
  2020年   758篇
  2019年   878篇
  2018年   802篇
  2017年   592篇
  2016年   782篇
  2015年   1090篇
  2014年   1327篇
  2013年   1334篇
  2012年   1637篇
  2011年   1505篇
  2010年   997篇
  2009年   822篇
  2008年   895篇
  2007年   825篇
  2006年   685篇
  2005年   617篇
  2004年   446篇
  2003年   347篇
  2002年   334篇
  2001年   234篇
  2000年   197篇
  1999年   190篇
  1998年   138篇
  1997年   119篇
  1996年   124篇
  1995年   98篇
  1994年   90篇
  1993年   72篇
  1992年   86篇
  1991年   56篇
  1990年   61篇
  1989年   51篇
  1988年   37篇
  1987年   31篇
  1986年   34篇
  1985年   31篇
  1984年   17篇
  1983年   14篇
  1982年   16篇
  1981年   8篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1976年   9篇
  1975年   8篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Hongkong kumquat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the monoembryonic F. hindsii (designated as ‘Mini‐Citrus’) for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (~8 months) and stable monoembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig‐N50 2.2 Mb and Scaffold‐N50 5.2 Mb) for F. hindsii. In total, 32 257 protein‐coding genes were annotated, 96.9% of which had homologues in other eight Citrinae species. The phylogenomic analysis revealed a close relationship of F. hindsii with cultivated citrus varieties, especially with mandarin. Furthermore, the CRISPR/Cas9 system was demonstrated to be an efficient strategy to generate target mutagenesis on F. hindsii. The modifications of target genes in the CRISPR‐modified F. hindsii were predominantly 1‐bp insertions or small deletions. This genetic transformation system based on F. hindsii could shorten the whole process from explant to T1 mutant to about 15 months. Overall, due to its short juvenility, monoembryony, close genetic background to cultivated citrus and applicability of CRISPR, F. hindsii shows unprecedented potentials to be used as a model species for citrus research.  相似文献   
972.
In this study, we compared the chemical forms and subcellular distribution of Cd in high-Cd (X16) and low-Cd (N88) sweet potato cultivars through hydroponic experiments and examined the Cd distribution in their roots by histochemical staining. The results showed that inorganic and pectate/protein-integrated Cd predominated in the leaves, and Cd concentrations were significantly higher in X16 than in N88. However, in the roots, Cd was mostly integrated with pectate and protein, and Cd concentration was higher in N88 than in X16. It was mainly stored through vacuolar sequestration and cell wall binding. In the leaves and stems, Cd concentrations in all subcellular fractions were higher in X16 than in N88; the opposite was observed in the roots. In X16, Cd was mostly accumulated in the root stele, and its Cd translocation factor was higher than that of N88. Overall, the subcellular fractions of X16 roots retained less Cd than N88 roots, and more Cd entered the root stele of X16 and subsequently moved to the shoots. The higher amounts of inorganic, water-soluble, and pectate/protein-integrated Cd with high mobility in the shoots of X16 than in N88 might facilitate Cd remobilization to other tissues, but this needs to be further studied.  相似文献   
973.
974.
975.
Evergestis extimalis  (Scopoli) is a pest insect present in spring rape fields of the Qinghai–Tibet plateau. A survey of its distribution and analysis of its physiological and biochemical variances of its overwintering larvae were conducted in this study. Prior to 2006, Evergestis extimalis Scopli appeared only sporadically at the east agricultural district of Qinghai Province at 2,100 m elevation; after 2006, there have been frequent outbreaks at 2,200 m or so height. The insect's distribution has extended continuously toward higher altitudes yearly, and the scope of its damage reached 2,800 m height in 2010. These changes indicate that the cold hardiness of E. extimalis is on the rise. Physiological and biochemical analyses were performed for the insect's overwintering larvae from November 2011 to March 2012. The supercooling point (SCP) and freezing point (FP) ranged from ?6.85°C to ?12.49°C and from ?6.23°C to ?8.17°C, respectively, and both were at their respective lowest points in January 2012; the lowest points of water and fat contents (which did not vary to any extreme degree throughout the test period) were also observed in January 2012. Glycogen content varied from 2.42 mg/g to 4.56 mg/g. Protein content increased gradually at the first two months and reached its peak in January 2012 before dropping slightly. The activity of protective enzymes POD, CAT, and SOD varied with changes in environmental temperature, and each was at its lowest point in January 2012. With the exception of protein and glycerol content, other physiological and biochemical variances were generally parallel with environmental temperature, strongly indicating that E. extimalis has indeed developed cold hardiness.  相似文献   
976.
Zhao  Jianlin  Peng  Wei  Ran  Yuxin  Ge  Huisheng  Zhang  Chen  Zou  Hong  Ding  Yubin  Qi  Hongbo 《Journal of physiology and biochemistry》2019,75(4):475-487
Journal of Physiology and Biochemistry - Preeclampsia (PE) is a hypertensive disease associated with increased endothelial cell dysfunction caused by systemic oxidative stress. Alpha-actinin-4...  相似文献   
977.
Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (?4.6 ± 1.0%/°C) than by WS (?1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.  相似文献   
978.
Increasing drought and extreme rainfall are major threats to maize production in the United States. However, compared to drought impact, the impact of excessive rainfall on crop yield remains unresolved. Here, we present observational evidence from crop yield and insurance data that excessive rainfall can reduce maize yield up to ?34% (?17 ± 3% on average) in the United States relative to the expected yield from the long‐term trend, comparable to the up to ?37% loss by extreme drought (?32 ± 2% on average) from 1981 to 2016. Drought consistently decreases maize yield due to water deficiency and concurrent heat, with greater yield loss for rainfed maize in wetter areas. Excessive rainfall can have either negative or positive impact on crop yield, and its sign varies regionally. Excessive rainfall decreases maize yield significantly in cooler areas in conjunction with poorly drained soils, and such yield loss gets exacerbated under the condition of high preseason soil water storage. Current process‐based crop models cannot capture the yield loss from excessive rainfall and overestimate yield under wet conditions. Our results highlight the need for improved understanding and modeling of the excessive rainfall impact on crop yield.  相似文献   
979.
A series of (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit were designed, synthesized and evaluated for their potential application as anticancer agents. The structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against HepG2, HeLa, CNE1 and A549 human cancer cell lines. Some of the synthesized compounds showed moderate to good anticancer activities against four selected cancer cell lines, among of which 6ag was found to be the most active analogue possessing IC50 values 16.5–18.7?μM. Further mechanism studies revealed that compound 6ag could significantly induce HepG2 cell cycle arrest at G1 phase, promote cell apoptosis, and inhibit the colony formation as well.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号