首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   37篇
  2022年   4篇
  2017年   2篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   9篇
  2004年   11篇
  2003年   7篇
  2002年   9篇
  2001年   15篇
  2000年   10篇
  1999年   11篇
  1998年   4篇
  1997年   4篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   10篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1982年   2篇
  1980年   2篇
  1979年   6篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1974年   7篇
  1973年   3篇
  1972年   5篇
  1971年   2篇
  1970年   2篇
  1969年   5篇
  1968年   4篇
  1967年   3篇
  1966年   2篇
  1965年   3篇
  1964年   3篇
  1961年   2篇
  1946年   2篇
  1941年   1篇
排序方式: 共有280条查询结果,搜索用时 31 毫秒
21.
The backbone assignments, secondary structure, topology, and dynamics of the single-chain hepatitis C virus NS3 protease NS4A cofactor complex have been determined by NMR spectroscopy. Residues I34 to S181 of NS3 and the central three residues of the NS4A cofactor were assigned and the secondary structure was verified for these residues. In several X-ray structures of NS4A-bound NS3 protease, residues 1 to 28 are stabilized by crystal packing, which allows for the formation of the A0 strand and alpha0 helix. In solution, these N-terminal residues are largely unassigned and no evidence of a well-structured A0 strand or alpha0 helix was detected. NOEs between residues in the E1-F1 loop (containing D81) and the alpha1 helix (containing H57) together with the detection of a D81-H57 hydrogen bond indicate that in solution the catalytic triad (D81, H57, S139) of the protease is better ordered in the presence of the NS4A cofactor. This is consistent with the earlier crystallographic results and may explain the observed increase in catalytic activity of the enzyme due to NS4A binding. A model-free analysis of our relaxation data indicates substantial exchange rates for residues V51-D81, which comprise the upper part of the N-terminal beta-barrel. A comparison of chemical-shift differences between NS3 protease and the NS3 protease-NS4A complex shows extensive chemical-shift changes for residues V51-D81 indicating that non-local structural changes occur upon NS4A binding to the NS3 protease that are propagated well beyond the protease-cofactor interaction site. This is consistent with crystallographic data that reveal large structural rearrangements of the strand and loop regions formed by residues V51-D81 as a result of NS4A binding. The coincidence of large exchange rates for the NS3 protease-NS4A complex with chemical-shift differences due to NS4A binding suggests that residues V51-D81 of the NS3 protease NS4A complex are in slow exchange with a NS4A-free conformation of NS3 protease.  相似文献   
22.
The NS3 protein of the hepatitis C virus (HCV) is a 631 amino acid residue bifunctional enzyme with a serine protease localized to the N-terminal 181 residues and an RNA helicase located in the C-terminal 450 residues. The HCV NS3 RNA helicase consists of three well-defined subdomains which all contribute to its helicase activity. The second subdomain of the HCV helicase is flexibly linked to the remainder of the NS3 protein and could undergo rigid-body movements during the unwinding of double-stranded RNA. It also contains several motifs that are implicated in RNA binding and in coupling NTP hydrolysis to nucleic acid unwinding and translocation. As part of our efforts to use NMR techniques to assist in deciphering the enzyme's structure-function relationships and developing specific small molecule inhibitors, we have determined the solution structure of an engineered subdomain 2 of the NS3 RNA helicase of HCV, d(2Delta)-HCVh, and studied the backbone dynamics of this protein by (15)N-relaxation experiments using a model-free approach. The NMR studies on this 142-residue construct reveal that overall subdomain 2 of the HCV helicase is globular and well structured in solution even in the absence of the remaining parts of the NS3 protein. Its solution structure is very similar to the corresponding parts in the X-ray structures of the HCV NS3 helicase domain and intact bifunctional HCV NS3 protein. Slow hydrogen-deuterium exchange rates map to a well-structured, stable hydrophobic core region away from the subdomain interfaces. In contrast, the regions facing the subdomain interfaces in the HCV NS3 helicase domain are less well structured in d(2Delta)-HCVh, show fast hydrogen-deuterium exchange rates, and the analysis of the dynamic properties of d(2Delta)-HCVh reveals that these regions of the protein show distinct dynamical features. In particular, residues in motif V, which may be involved in transducing allosteric effects of nucleotide binding and hydrolysis on RNA binding, exhibit slow conformational exchange on the milli- to microsecond time-scale. The intrinsic conformational flexibility of this loop region may facilitate conformational changes required for helicase function.  相似文献   
23.
24.
The NS3 helicase of the hepatitis C virus (HCV) unwinds double-stranded (ds) nucleic acid (NA) in an NTP-dependent fashion. Mechanistic details of this process are, however, largely unknown for the HCV helicase. We have studied the binding of dsDNA to an engineered version of subdomain 2 of the HCV helicase (d(2Delta)NS3h) by NMR and circular dichroism. Binding of dsDNA to d(2Delta)NS3h induces a local unfolding of helix (alpha(3)), which includes residues of conserved helicase motif VI (Q(460)RxxRxxR(467)), and strands (beta(1) and beta(8)) from the central beta-sheet. This also occurs upon lowering the pH (4.4) and introducing an R461A point mutation, which disrupt salt bridges with Asp 412 and Asp 427 in the protein structure. NMR studies on d(2Delta)NS3h in the partially unfolded state at low pH map the dsDNA binding site to residues previously shown to be involved in single-stranded DNA binding. Sequence alignment and structural comparison suggest that these Arg-Asp interactions are highly conserved in SF2 DEx(D/H) proteins. Thus, modulation of these interactions by dsNA may allow SF2 helicases to switch between conformations required for helicase function.  相似文献   
25.
Engineering of phytase for improved activity at low pH   总被引:4,自引:0,他引:4  
For industrial applications in animal feed, a phytase of interest must be optimally active in the pH range prevalent in the digestive tract. Therefore, the present investigation describes approaches to rationally engineer the pH activity profiles of Aspergillus fumigatus and consensus phytases. Decreasing the negative surface charge of the A. fumigatus Q27L phytase mutant by glycinamidylation of the surface carboxy groups (of Asp and Glu residues) lowered the pH optimum by ca. 0.5 unit but also resulted in 70 to 75% inactivation of the enzyme. Alternatively, detailed inspection of amino acid sequence alignments and of experimentally determined or homology modeled three-dimensional structures led to the identification of active-site amino acids that were considered to correlate with the activity maxima at low pH of A. niger NRRL 3135 phytase, A. niger pH 2.5 acid phosphatase, and Peniophora lycii phytase. Site-directed mutagenesis confirmed that, in A. fumigatus wild-type phytase, replacement of Gly-277 and Tyr-282 with the corresponding residues of A. niger phytase (Lys and His, respectively) gives rise to a second pH optimum at 2.8 to 3.4. In addition, the K68A single mutation (in both A. fumigatus and consensus phytase backbones), as well as the S140Y D141G double mutation (in A. fumigatus phytase backbones), decreased the pH optima with phytic acid as substrate by 0.5 to 1.0 unit, with either no change or even a slight increase in maximum specific activity. These findings significantly extend our tools for rationally designing an optimal phytase for a given purpose.  相似文献   
26.
Previously, we calculated a consensus amino acid sequence from 13 homologous fungal phytases. A synthetic gene was constructed and recombinantly expressed. Surprisingly, consensus phytase-1 was 15-26 degrees C more thermostable than all parent phytases used in its design [Lehmann et al. (2000)Protein Eng., 13, 49-57]. In the present study, inclusion of six further phytase sequences in the amino acid sequence alignment resulted in the replacement of 38 amino acid residues in either one or both of the new consensus phytases-10 and -11. Since consensus phytase-10, again, was 7.4 degrees C more thermostable than consensus phytase-1, the thermostability effects of most of the 38 amino acid substitutions were tested by site-directed mutagenesis. Both stabilizing and destabilizing mutations were identified, but all affected the stability of the enzyme by <3 degrees C. The combination of all stabilizing amino acid exchanges in a multiple mutant of consensus phytase-1 increased the unfolding temperature from 78.0 to 88.5 degrees C. Likewise, back-mutation of four destabilizing amino acids and introduction of an additional stabilizing amino acid in consensus phytase-10 further increased the unfolding temperature from 85.4 to 90.4 degrees C. The thermostabilization achieved is the result of a combination of slight improvements from multiple amino acid exchanges rather than being the effect of a single or of just a few dominating mutations that have been introduced by chance. The present findings support the general validity of the consensus concept for thermostability engineering of proteins.  相似文献   
27.
The consensus concept for thermostability engineering of proteins   总被引:16,自引:0,他引:16  
Previously, sequence comparisons between a mesophilic enzyme and a more thermostable homologue were shown to be a feasible approach to successfully predict thermostabilizing amino acid substitutions. The 'consensus approach' described in the present paper shows that even a set of amino acid sequences of homologous, mesophilic enzymes contains sufficient information to allow rapid design of a thermostabilized, fully functional variant of this family of enzymes. A sequence alignment of homologous fungal phytases was used to calculate a consensus phytase amino acid sequence. Upon construction of the synthetic gene, recombinant expression and purification, the first phytase obtained, termed consensus phytase-1, displayed an unfolding temperature (T(m)) of 78.0 degrees C which is 15-22 degrees C higher than the T(m) values of all parent phytases used in its design. Refinement of the approach, combined with site-directed mutagenesis experiments, yielded optimized consensus phytases with T(m) values of up to 90.4 degrees C. These increases in T(m) are due to the combination of multiple amino acid exchanges which are distributed over the entire sequence of the protein and mainly affect surface-exposed residues; each individual substitution has a rather small thermostabilizing effect only. Remarkably, in spite of the pronounced increase in thermostability, catalytic activity at 37 degrees C is not compromised. Thus, the design of consensus proteins is a potentially powerful and novel alternative to directed evolution and to a series of rational approaches for thermostability engineering of enzymes and other proteins.  相似文献   
28.
Recently discovered deposits containing terrestrial mammal fossils, together with multidisciplinary studies of classical sequences, have yielded dramatic insights into the biotic and environmental history of South America. Notable advances include several new fossil primate taxa, an improved chronology of two major immigration events (caviomorph rodents and new world monkeys), documentation of the oldest mammalian faunas dominated by grazing taxa (which suggests that grasslands appeared at least 15 million years earlier than on other continents), evidence of early biogeographical provinciality within South America, and improved sampling of the best known Cenozoic tropical South American paleofauna.  相似文献   
29.
Puerarin (an isoflavone C-glucoside from kudzu root) has been the focus of several studies investigating its potential effects on health benefits. In this study, we determined single dose tissue distribution of puerarin and its metabolites in order to examine whether they undergo selective uptake by specific organs. Puerarin was administered orally (50 mg/kg) to rats and the concentration of puerarin in tissue compartments was determined using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Puerarin was widely distributed in rat tissues with highest concentrations in lungs (799±411.6 ng/g wet tissues). In addition, we examined the excretion of puerarin into the bile. LC–MS/MS analysis of bile samples collected after infusing puerarin directly into the portal vein indicated that puerarin was excreted into the bile predominantly in the form of unconjugated puerarin. This report identifying puerarin in several organs including kidney and pancreas may explain its beneficial effects in diabetes.  相似文献   
30.
The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号