首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   30篇
  2021年   10篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   11篇
  2014年   18篇
  2013年   18篇
  2012年   27篇
  2011年   13篇
  2010年   23篇
  2009年   10篇
  2008年   16篇
  2007年   12篇
  2006年   9篇
  2005年   9篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   7篇
  1988年   10篇
  1987年   4篇
  1986年   9篇
  1984年   2篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1959年   2篇
  1957年   3篇
  1948年   2篇
  1947年   2篇
  1935年   3篇
  1933年   2篇
  1909年   2篇
排序方式: 共有388条查询结果,搜索用时 31 毫秒
121.
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species‐rich plant communities found in temperate seminatural grasslands. We investigated effects of land‐use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee‐pollination‐dependent plants increased with higher proportions of non‐arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land‐use intensity in the landscape.  相似文献   
122.
123.

Introduction

The goal of this study is to investigate whether the -308G > A promoter polymorphism in the tumor necrosis factor alpha (TNFA) gene is associated with disease severity and radiologic joint damage in a large cohort of patients with rheumatoid arthritis (RA).

Methods

A long-term observational early RA inception cohort (n = 208) with detailed information about disease activity and radiologic damage after 3, 6 and 9 years of disease was genotyped for the TNFA -308G > A promoter polymorphism (rs1800629). A longitudinal regression analysis was performed to assess the effect of genotype on RA disease severity and joint damage. Subsequently, a meta-analysis, including all publically available data, was performed to further test the association between joint erosions and the TNFA polymorphism. To learn more about the mechanism behind the effect of the polymorphism, RNA isolated from peripheral blood from RA patients (n = 66) was used for TNFA gene expression analysis by quantitative PCR.

Results

Longitudinal regression analysis with correction for gender and disease activity showed a significant difference in total joint damage between GG and GA+AA genotype groups (P = 0.002), which was stable over time. The meta-analysis, which included 2,053 patients, confirmed an association of the genetic variant with the development of erosions (odds ratio 0.78, 95% CI 0.62, 0.98). No significant differences in TNFA gene expression were observed for the different genotypes, confirming earlier findings in healthy individuals.

Conclusions

Our data confirm that the TNFA -308G > A promoter polymorphism is associated with joint damage in patients with RA. This is not mediated by differences in TNFA gene expression between genotypes.  相似文献   
124.
Structural characterization of proteasome complexes is an essential step toward understanding the ubiquitin-proteasome system. Currently, high resolution structures are not available for the 26S proteasome holocomplex as well as its subcomplex, the 19S regulatory particle (RP). Here we have employed a novel integrated strategy combining chemical cross-linking with multistage tandem mass spectrometry to define the proximity of subunits within the yeast 19S RP to elucidate its topology. This has resulted in the identification of 174 cross-linked peptides of the yeast 19S RP, representing 43 unique lysine-lysine linkages within 24 nonredundant pair-wise subunit interactions. To map the spatial organization of the 19S RP, we have developed and utilized a rigorous probabilistic framework to derive maximum likelihood (ML) topologies based on cross-linked peptides determined from our analysis. Probabilistic modeling of the yeast 19S AAA-ATPase ring (i.e., Rpt1–6) has produced an ML topology that is in excellent agreement with known topologies of its orthologs. In addition, similar analysis was carried out on the 19S lid subcomplex, whose predicted ML topology corroborates recently reported electron microscopy studies. Together, we have demonstrated the effectiveness and potential of probabilistic modeling for unraveling topologies of protein complexes using cross-linking data. This report describes the first study of the 19S RP topology using a new integrated strategy combining chemical cross-linking, mass spectrometry, and probabilistic modeling. Our results have provided a solid foundation to advance our understanding of the 19S RP architecture at peptide level resolution. Furthermore, our methodology developed here is a valuable proteomic tool that can be generalized for elucidating the structures of protein complexes.Basic cellular homeostasis depends on the regulated protein degradation and turnover by the ubiquitin-proteasome system (1, 2). Central to this pathway is the 26S proteasome complex, which is responsible for ubiquitin/ATP-dependent protein degradation (35). The 26S holocomplex is a megadalton-sized protein assembly consisting of the 20S catalytic core particle (CP)1 and the 19S regulatory particle (RP). The eukaryotic 20S CP is composed of two copies of 14 nonidentical subunits (α1–7 and β1–7) arranged into four stacked heptameric rings in an order of α7β7β7α7. The crystal structure and topology of the highly ordered 20S CP has been resolved and is evolutionarily conserved (6). Although α subunits of the 20S CP are essential for the assembly of the complex and its interactions with the regulatory complex, three catalytic β subunits (β1, β2, and β5) harbor various catalytic activities responsible for regulated proteasomal degradation. The 19S RP is composed of 19 subunits, which forms two subcomplexes, the base consisting of six related AAA-ATPase (Rpt1–6) and four non-ATPase (Rpn1, Rpn2, Rpn10, and Rpn13) subunits and the lid containing nine non-ATPase subunits (Rpn3, Rpn5–9, Rpn11, Rpn12, and Rpn15/Sem1) (7, 8). In comparison with the 20S core, the function and structure of the 19S RP is much less well understood. Nevertheless, it is believed that the 19S RP is involved in multiple functions including recognition of polyubiquitinated substrates (9, 10), cleavage of the polyubiquitin chains to recycle ubiquitin (11), unfolding of substrates, assisting in opening the gate of the 20S chamber, and subsequently translocating the unfolded substrates into the catalytic chamber (4, 1214). The six AAA-ATPase subunits (Rpt1–6), which directly interact with the 20S α-ring, function as a molecular chaperone responsible for protein unfolding and are involved in substrate translocation and modulating gating of the CP (5, 15). Although detailed functions for most of the 19S non-ATPase subunits remain elusive, Rpn11 is known to carry an Mpr1p and Pad1p N-termini (MPN) domain, which harbors an essential deubiquitination activity responsible for cleaving polyubiquitin chains from proteasomal substrates (11, 16). In addition, two proteasome subunits, Rpn10 and Rpn13, have been identified as ubiquitin receptors, which are important in docking ubiquitinated substrates to the proteasome for degradation (4). Moreover, the two largest proteasome subunits, Rpn1 and Rpn2, interact with a variety of proteins including ubiquitin receptors and deubiquitinases and thus may function as scaffolding proteins to assist proteasomal degradation. Thus far, no atomic resolution structures are available for either the 19S RP or the 26S holocomplex. New insights of the overall topology of the 19S RP will illuminate protein interactions within, thus providing evidence for its otherwise unknown functions.Although many studies have been performed to characterize the 19S structure utilizing various techniques including cryo-EM (17, 18) and native mass spectrometry (19), details on spatial interfaces and subunit interconnectivity of the 19S RP remain to be unraveled. During the course of our study, the rough topology of the 19S RP was determined by cryo-EM alone (20) or coupled with other approaches (21); nevertheless more detailed information at the peptide or atomic level is still required. In addition to technological limitations in current approaches, the highly dynamic and heterogeneous nature of the 19S RP may attribute to the difficulty in obtaining its high resolution structure. In recent years, chemical cross-linking coupled with mass spectrometry (XL-MS) has become an attractive alternative for structure analysis of proteins and protein complexes (22, 23). The ability of XL-MS to identify interaction interfaces between proteins allows us to define low resolution protein topology. In addition to protein interaction networks and the site of protein interactions at binding interfaces, cross-linking analysis can reveal information about the spatial distance between cross-linked amino acids on the surface of folded proteins. Although such knowledge only reveals the maximum distance given by the length of the cross-linker and can be influenced by protein conformational flexibility, it can be used as the distance constraint for molecular modeling of protein folds and complex topologies, i.e., the arrangement of the constituents of a complex in space. A recent study by Chen et al. (24) on yeast RNA polymerase II (RNAPII) complex has exemplified the power of XL-MS in elucidating the architecture of large multisubunit complexes. Although effective, cross-linking studies have been challenging because of the low abundance of cross-linked products and the inherent complexity of sequencing interlinked peptides by MS for unambiguous identification. To facilitate MS detection and identification of cross-linked products, we have recently developed a novel homobifunctional amine reactive, low energy MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO), and successfully applied it to cross-link the yeast 20S proteasome for rapid, accurate, and simplified determination of protein interaction interfaces within the complex (25). The unique functionality of our cross-linking reagent and specialized bioinformatics tools significantly increase our confidence and speed in the identification of cross-linked products when compared with cross-linking studies using traditional noncleavable reagents. Current cross-linking studies have been focused on protein complexes with known crystal structures, but topological structures of protein complexes based primarily on cross-linking data have not yet been reported. This is due to the lack of computational tools that use cross-linking data to deduce the spatial organization of subunits in a given complex. To define the architecture of the yeast 19S RP, we have characterized the proximity and interconnectivity of the subunits by employing our newly developed cross-linking strategy. The resulting cross-linking information serves as a basis for a rigorous probabilistic analysis to obtain the maximum likelihood (ML) topology. This strategy is developed by first analyzing our cross-linking data for the 19S six-member AAA-ATPase base ring, as the topology ordering of yeast orthologs has been recently determined (14, 2628). The effectiveness of this new probabilistic platform is supported by the agreement between our derived ML topology of the AAA-ATPase base ring and previous reports. When the same probabilistic approach is applied to the 19S lid subcomplex, the resulting topology is also in agreement with recently proposed models (20, 21). This work represents the first application of probabilistic modeling of protein complexes based solely on cross-link data, establishing a new workflow for future structural analysis of large protein complexes using XL-MS.  相似文献   
125.

Background

Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues.

Results

We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained.

Conclusions

Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles.  相似文献   
126.
The authors of “The anglerfish deception” respond to the criticism of their article.EMBO reports (2012) advanced online publication; doi: 10.1038/embor.2012.70EMBO reports (2012) 13 2, 100–105; doi: 10.1038/embor.2011.254Our respondents, eight current or former members of the EFSA GMO panel, focus on defending the EFSA''s environmental risk assessment (ERA) procedures. In our article for EMBO reports, we actually focused on the proposed EU GMO legislative reform, especially the European Commission (EC) proposal''s false political inflation of science, which denies the normative commitments inevitable in risk assessment (RA). Unfortunately the respondents do not address this problem. Indeed, by insisting that Member States enjoy freedom over risk management (RM) decisions despite the EFSA''s central control over RA, they entirely miss the relevant point. This is the unacknowledged policy—normative commitments being made before, and during, not only after, scientific ERA. They therefore only highlight, and extend, the problem we identified.The respondents complain that we misunderstood the distinction between RA and RM. We did not. We challenged it as misconceived and fundamentally misleading—as though only objective science defined RA, with normative choices cleanly confined to RM. Our point was that (i) the processes of scientific RA are inevitably shaped by normative commitments, which (ii) as a matter of institutional, policy and scientific integrity must be acknowledged and inclusively deliberated. They seem unaware that many authorities [1,2,3,4] have recognized such normative choices as prior matters, of RA policy, which should be established in a broadly deliberative manner “in advance of risk assessment to ensure that [RA] is systematic, complete, unbiased and transparent” [1]. This was neither recognized nor permitted in the proposed EC reform—a central point that our respondents fail to recognize.In dismissing our criticism that comparative safety assessment appears as a ‘first step'' in defining ERA, according to the new EFSA ERA guidelines, which we correctly referred to in our text but incorrectly referenced in the bibliography [5], our respondents again ignore this widely accepted ‘framing'' or ‘problem formulation'' point for science. The choice of comparator has normative implications as it immediately commits to a definition of what is normal and, implicitly, acceptable. Therefore the specific form and purpose of the comparison(s) is part of the validity question. Their claim that we are against comparison as a scientific step is incorrect—of course comparison is necessary. This simply acts as a shield behind which to avoid our and others'' [6] challenge to their self-appointed discretion to define—or worse, allow applicants to define—what counts in the comparative frame. Denying these realities and their difficult but inevitable implications, our respondents instead try to justify their own particular choices as ‘science''. First, they deny the first-step status of comparative safety assessment, despite its clear appearance in their own ERA Guidance Document [5]—in both the representational figure (p.11) and the text “the outcome of the comparative safety assessment allows the determination of those ‘identified'' characteristics that need to be assessed [...] and will further structure the ERA” (p.13). Second, despite their claims to the contrary, ‘comparative safety assessment'', effectively a resurrection of substantial equivalence, is a concept taken from consumer health RA, controversially applied to the more open-ended processes of ERA, and one that has in fact been long-discredited if used as a bottleneck or endpoint for rigorous RA processes [7,8,9,10]. The key point is that normative commitments are being embodied, yet not acknowledged, in RA science. This occurs through a range of similar unaccountable RA steps introduced into the ERA Guidance, such as judgement of ‘biological relevance'', ‘ecological relevance'', or ‘familiarity''. We cannot address these here, but our basic point is that such endless ‘methodological'' elaborations of the kind that our EFSA colleagues perform, only obscure the institutional changes needed to properly address the normative questions for policy-engaged science.Our respondents deny our claim concerning the singular form of science the EC is attempting to impose on GM policy and debate, by citing formal EFSA procedures for consultations with Member States and non-governmental organizations. However, they directly refute themselves by emphasizing that all Member State GM cultivation bans, permitted only on scientific grounds, have been deemed invalid by EFSA. They cannot have it both ways. We have addressed the importance of unacknowledged normativity in quality assessments of science for policy in Europe elsewhere [11]. However, it is the ‘one door, one key'' policy framework for science, deriving from the Single Market logic, which forces such singularity. While this might be legitimate policy, it is not scientific. It is political economy.Our respondents conclude by saying that the paramount concern of the EFSA GMO panel is the quality of its science. We share this concern. However, they avoid our main point that the EC-proposed legislative reform would only exacerbate their problem. Ignoring the normative dimensions of regulatory science and siphoning-off scientific debate and its normative issues to a select expert panel—which despite claiming independence faces an EU Ombudsman challenge [12] and European Parliament refusal to discharge their 2010 budget, because of continuing questions over conflicts of interests [13,14]—will not achieve quality science. What is required are effective institutional mechanisms and cultural norms that identify, and deliberatively address, otherwise unnoticed normative choices shaping risk science and its interpretive judgements. It is not the EFSA''s sole responsibility to achieve this, but it does need to recognize and press the point, against resistance, to develop better EU science and policy.  相似文献   
127.

Background

Patients with ST-elevation myocardial infarction (STEMI) not treated with primary or rescue percutaneous coronary intervention (PCI) are at risk for recurrent ischemia, especially when viability in the infarct-area is present. Therefore, an invasive strategy with PCI of the infarct-related coronary artery in patients with viability would reduce the occurrence of a composite end point of death, reinfarction, or unstable angina (UA).

Methods

Patients admitted with an (sub)acute myocardial infarction, who were not treated by primary or rescue PCI, and who were stable during the first 48 hours after the acute event, were screened for the study. Eventually, we randomly assigned 216 patients with viability (demonstrated with low-dose dobutamine echocardiography) to an invasive or a conservative strategy. In the invasive strategy stenting of the infarct-related coronary artery was intended with abciximab as adjunct treatment. Seventy-five (75) patients without viability served as registry group. The primary endpoint was the composite of death from any cause, recurrent myocardial infarction (MI) and unstable angina at one year. As secondary endpoint the need for (repeat) revascularization procedures and anginal status were recorded.

Results

The primary combined endpoint of death, recurrent MI and unstable angina was 7.5% (8/106) in the invasive group and 17.3% (19/110) in the conservative group (Hazard ratio 0.42; 95% confidence interval [CI] 0.18-0.96; p = 0.032). During follow up revascularization-procedures were performed in 6.6% (7/106) in the invasive group and 31.8% (35/110) in the conservative group (Hazard ratio 0.18; 95% CI 0.13-0.43; p < 0.0001). A low rate of recurrent ischemia was found in the non-viable group (5.4%) in comparison to the viable-conservative group (14.5%). (Hazard-ratio 0.35; 95% CI 0.17-1.00; p = 0.051).

Conclusion

We demonstrated that after acute MI (treated with thrombolysis or without reperfusion therapy) patients with viability in the infarct-area benefit from a strategy of early in-hospital stenting of the infarct-related coronary artery. This treatment results in a long-term uneventful clinical course. The study confirmed the low risk of recurrent ischemia in patients without viability.

Trial registration

ClinicalTrials.gov: NCT00149591.  相似文献   
128.

Background

The International Scientific Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT), that produced its first Guidelines in 2005, felt the need to revise them and increase their scientific quality. The aim is to offer to all professionals and their patients an evidence-based updated review of the actual evidence on conservative treatment of idiopathic scoliosis (CTIS).

Methods

All types of professionals (specialty physicians, and allied health professionals) engaged in CTIS have been involved together with a methodologist and a patient representative. A review of all the relevant literature and of the existing Guidelines have been performed. Documents, recommendations, and practical approach flow charts have been developed according to a Delphi procedure. A methodological and practical review has been made, and a final Consensus Session was held during the 2011 Barcelona SOSORT Meeting.

Results

The contents of the document are: methodology; generalities on idiopathic scoliosis; approach to CTIS in different patients, with practical flow-charts; literature review and recommendations on assessment, bracing, physiotherapy, Physiotherapeutic Specific Exercises (PSE) and other CTIS. Sixty-five recommendations have been given, divided in the following topics: Bracing (20 recommendations), PSE to prevent scoliosis progression during growth (8), PSE during brace treatment and surgical therapy (5), Other conservative treatments (3), Respiratory function and exercises (3), Sports activities (6), Assessment (20). No recommendations reached a Strength of Evidence level I; 2 were level II; 7 level III; and 20 level IV; through the Consensus procedure 26 reached level V and 10 level VI. The Strength of Recommendations was Grade A for 13, B for 49 and C for 3; none had grade D.

Conclusion

These Guidelines have been a big effort of SOSORT to paint the actual situation of CTIS, starting from the evidence, and filling all the gray areas using a scientific method. According to results, it is possible to understand the lack of research in general on CTIS. SOSORT invites researchers to join, and clinicians to develop good research strategies to allow in the future to support or refute these recommendations according to new and stronger evidence.  相似文献   
129.
An Atlantic herring major histocompatibility class II A ( Clha-DAA ) cDNA sequence has been characterized and was shown to encode a leader peptide, alpha-1 domain, alpha-2 domain, connecting peptide, transmembrane and cytoplasmic region. The Clha-DAA protein sequence has all the characteristics of a teleost class II A protein with conserved cysteines in both the alpha-1 and the alpha-2 domains and two potential N-linked glycosylation sites. Exon 2 sequences encoding the polymorphic alpha-1 domain from different individuals were analysed and revealed the presence of at least two loci. The Clha-DAA gene consists of four exons and three short introns. Four unique intron 3 sequences from multiple individuals were obtained and were shown to contain a (TG)n microsatellite sequence. Primers were optimized such that only a single microsatellite locus designated Clha-DAA-INTR3 was amplified. Four herring populations from the North Sea and the Baltic Sea were genotyped for Clha-DAA-INTR3 . In total, 16 Clha-DAA-INTR3 alleles were detected; the distribution of the alleles showed no deviation from Hardy–Weinberg expectation. Levels of genetic differentiation among samples were of similar magnitude as have been reported earlier for neutral microsatellite loci between northern North Sea and Baltic Sea herring populations.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号