首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   51篇
  352篇
  2018年   3篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   17篇
  2012年   7篇
  2011年   29篇
  2010年   6篇
  2009年   21篇
  2008年   10篇
  2007年   5篇
  2006年   11篇
  2005年   26篇
  2004年   11篇
  2003年   14篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   6篇
  1985年   3篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1972年   2篇
  1971年   5篇
  1970年   6篇
  1969年   3篇
  1968年   7篇
  1967年   4篇
  1966年   8篇
  1965年   7篇
  1964年   2篇
  1958年   3篇
  1957年   2篇
  1947年   2篇
排序方式: 共有352条查询结果,搜索用时 46 毫秒
51.
DNA double-strand breaks are repaired by one of two main pathways, non-homologous end joining or homologous recombination. A competition for binding to DNA ends by Ku and Rad52, proteins required for non-homologous end joining and homologous recombination, respectively, has been proposed to determine the choice of repair pathway. In order to test this idea directly, we compared Ku and human Rad52 binding to different DNA substrates. How ever, we found no evidence that these proteins would compete for binding to the same broken DNA ends. Ku bound preferentially to DNA with free ends. Under the same conditions, Rad52 did not bind preferentially to DNA ends. Using a series of defined substrates we showed that it is single-stranded DNA and not DNA ends that were preferentially bound by Rad52. In addition, Rad52 aggregated DNA, bringing different single-stranded DNAs in close proximity. This activity was independent of the presence of DNA ends and of the ability of the single-stranded sequences to form extensive base pairs. Based on these DNA binding characteristics it is unlikely that Rad52 and Ku compete as ‘gatekeepers’ of different DNA double-strand break repair pathways. Rather, they interact with different DNA substrates produced early in DNA double-strand break repair.  相似文献   
52.
The effects of iron limitation on photosystem II (PSII) composition and photochemical energy conversion efficiency were studied in the unicellular chlorophyte alga Dunaliella tertiolecta. The quantum yield of photochemistry in PSII, inferred from changes in variable fluorescence normalized to the maximum fluorescence yield, was markedly lower in iron-limited cells and increased 3-fold within 20 h following the addition of iron. The decrease in the quantum yield of photochemistry was correlated with increased fluorescence emission from the antenna. In iron-limited cells, flash intensity saturation profiles of variable fluorescence closely followed a cumulative one-hit Poisson model, suggesting that PSII reaction centers are energetically isolated, whereas in iron-replete cells, the slope of the profile was steeper and the calculated probability of energy transfer between reaction centers increased to >0.6. Immunoassays revealed that in iron-limited cells the reaction center proteins, D1, CP43, and CP47, were markedly reduced relative to the peripheral light-harvesting Chl-protein complex of PSII, whereas the [alpha] subunit of cytochrome b559 was about 10-fold higher. Spectroscopic analysis established that the cytochrome b559 peptide did not contain an associated functional heme. We conclude that the photochemical conversion of absorbed excitation energy in iron-limited cells is limited by the number of photochemical traps per unit antenna.  相似文献   
53.
Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons. Despite its higher cellulose content per dry mass, Dacotah switchgrass harvested after wintering consistently gave a lower saccharification yield than the other two varieties harvested in the fall. The recalcitrance of upland cultivars and over-wintered switchgrass may require more severe pretreatment conditions. We discuss the key features of different pretreatment technologies and differences in switchgrass cultivars and harvest seasons on hydrolysis performance for the applied pretreatment methods.  相似文献   
54.
55.
56.
Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with Saccharomyces cerevisiae D5A. The impact of cellulase, β-glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25–30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3–4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.  相似文献   
57.
Concerted changes in an allosteric macromolecule   总被引:3,自引:0,他引:3  
This paper reports an analysis of the behaviour of allosteric macromolecules in the framework of the simple Monod-Wyman-Changeux model. The emphasis is on the analysis of the reciprocal influence of the various parameters which enter into the model, with particular reference to the relationship among a number of sites in the macromolecule and the Hill parameter n. This appears of interest for the behaviour of some of the extremely large respiratory proteins containing up to 100, or more, oxygen binding sites, where a very large value of n is often coupled with a relatively small value of the total interaction free energy.  相似文献   
58.
59.
RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with its biologically most relevant substrate, long ssDNA molecules. We find that RecA ATPase activity is required for the formation of long continuous filaments on ssDNA. These filaments both nucleate and extend with a multimeric unit as indicated by the Hill coefficient of 5.4 for filament nucleation. Disassembly rates of RecA from ssDNA decrease with applied stretching force, corresponding to a mechanism where protein-induced stretching of the ssDNA aids in the disassembly. Finally, we show that RecA–ssDNA filaments can reversibly interconvert between an extended, ATP-bound, and a compressed, ADP-bound state. Taken together, our results demonstrate that ATP hydrolysis has a major influence on the structure and state of RecA filaments on ssDNA.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号