全文获取类型
收费全文 | 400篇 |
免费 | 37篇 |
国内免费 | 1篇 |
专业分类
438篇 |
出版年
2023年 | 3篇 |
2022年 | 5篇 |
2021年 | 10篇 |
2020年 | 5篇 |
2019年 | 10篇 |
2018年 | 7篇 |
2017年 | 4篇 |
2016年 | 5篇 |
2015年 | 14篇 |
2014年 | 15篇 |
2013年 | 19篇 |
2012年 | 20篇 |
2011年 | 19篇 |
2010年 | 13篇 |
2009年 | 18篇 |
2008年 | 21篇 |
2007年 | 12篇 |
2006年 | 13篇 |
2005年 | 12篇 |
2004年 | 18篇 |
2003年 | 17篇 |
2002年 | 18篇 |
2001年 | 5篇 |
2000年 | 10篇 |
1999年 | 9篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1994年 | 7篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1989年 | 5篇 |
1986年 | 5篇 |
1985年 | 7篇 |
1984年 | 5篇 |
1982年 | 5篇 |
1981年 | 6篇 |
1979年 | 5篇 |
1977年 | 9篇 |
1976年 | 5篇 |
1975年 | 3篇 |
1974年 | 5篇 |
1971年 | 3篇 |
1970年 | 6篇 |
1968年 | 3篇 |
1967年 | 2篇 |
1954年 | 2篇 |
1927年 | 2篇 |
排序方式: 共有438条查询结果,搜索用时 10 毫秒
1.
2.
3.
Abstract: Activation of immediate early gene expression is a key event in stress-induced neuronal cell injury. To study whether changes in cytoplasmic calcium activity are necessary to activate neuronal immediate early gene expression, endoplasmic reticulum (ER) calcium stores of primary neurons were depleted by exposing cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+ -ATPase. Tg-induced rise in [Ca2+ ]i and the effect of loading neurons with the cell-permeable calcium chelator BAPTA-AM on this increase in [Ca2+ ]i were measured in fura-2-loaded cells by fluorescence microscopy. Changes in c- fos mRNA levels were evaluated by quantitative PCR. Tg treatment of neurons produced a pronounced rise in c- fos mRNA levels (∼10-fold more than DMSO) which peaked at 1 h after exposure. The Tg-induced rise in c- fos mRNA content was unchanged (hippocampal neurons) or even increased further (cortical neurons) by preloading cells with BAPTA before incubation with Tg. It is concluded that in neuronal cells an increase in cytoplasmic calcium activity is not a prerequisite for a rise in mRNA levels of c- fos . Thus, stress-induced changes in mRNA levels of immediate early genes of neurons may also result from disturbances in ER calcium homeostasis and not necessarily by an overload of cells with calcium ions. The results of the present series of experiments cast further doubt on the widely accepted hypothesis that the stress-induced cytoplasmic overload of neurons with calcium ions is the primary event triggering cell injury. 相似文献
4.
Mechanisms of glycogenolysis have been investigated in a comparative study with Wistar rats and gsd rats, which maintain a high glycogen concentration in the liver as a result of a genetic deficiency of phosphorylase kinase. In Wistar hepatocytes the rate of glycogenolysis, as modulated by glucagon and by glucose, was proportional to the concentration of phosphorylase a. In suspensions of gsd hepatocytes the rate of glycogenolysis was far too high as compared with the low level of phosphorylase a; in addition, only a minor fraction of the glycogen lost was recovered as glucose and lactate, owing to the accumulation of oligosaccharides. When the gsd hepatocytes were incubated in the presence of an inhibitor of alpha-amylase (BAY e 4609) glycogenolysis and the formation of oligosaccharides virtually ceased; the production of glucose plus lactate, already modest in the absence of BAY e 4609, was further decreased by 40%, owing to the suppression of a pathway for glucose production by the successive actions of alpha-amylase and alpha-glucosidase. Evidence was obtained that gsd hepatocytes are more fragile, and that amylolysis of glycogen occurred in damaged cells and/or in the extracellular medium. This may even occur in vivo, since quick-frozen liver samples from anesthetized gsd rats contained severalfold higher concentrations of oligosaccharides than did similar samples from Wistar rats. However, administration of a hepatotoxic agent (CCl4) caused hepatic glycogen depletion in Wistar rats, but not in gsd rats. The administration of phloridzin and of vinblastine, which have been proposed to induce glycogenolysis in the lysosomal system, did not decrease the hepatic glycogen level in gsd rats. Taken together, the data indicate that only the phosphorolytic degradation of glycogen is metabolically important, and that alpha-amylolysis is an indication of an increased fragility of gsd hepatocytes, which becomes prominent when these cells are incubated in vitro. 相似文献
5.
6.
The myxobacterium Stigmatella aurantiaca is a prokaryotic model used to study intercellular signalling and the genetic determination of morphogenesis. Signalling factors and genes required for the generation of the elaborate multicellular fruiting body are to be identified. Recently, the structure of stigmolone, which is the pheromone necessary for fruiting body formation, was elucidated, and genes involved in development were characterised. Progress has also been made in the genetic accessibility of S. aurantiaca. 相似文献
7.
Timo Heckt Thomas Bickert Anke Jeschke Sebastian Seitz Jochen Schulze Wulf D. Ito Wolfgang Zimmermann Michael Amling Thorsten Schinke Andrea Kristina Horst Johannes Keller 《PloS one》2014,9(12)
Alterations in bone remodeling are a major public health issue, as therapeutic options for widespread bone disorders such as osteoporosis and tumor-induced osteolysis are still limited. Therefore, a detailed understanding of the regulatory mechanism governing bone cell differentiation in health and disease are of utmost clinical importance. Here we report a novel function of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a member of the immunoglobulin superfamily involved in inflammation and tumorigenesis, in the physiologic regulation of bone remodeling. Assessing the expression of all members of the murine Ceacam family in bone tissue and marrow, we found CEACAM1 and CEACAM10 to be differentially expressed in both bone-forming osteoblasts and bone-resorbing osteoclasts. While Ceacam10-deficient mice displayed no alteration in structural bone parameters, static histomorphometry demonstrated a reduced trabecular bone mass in mice lacking CEACAM1. Furthermore, cellular and dynamic histomorphometry revealed an increased osteoclast formation in Ceacam1-deficient mice, while osteoblast parameters and the bone formation rate remained unchanged. In line with these findings, we detected accelerated osteoclastogenesis in Ceacam1-deficient bone marrow cells, while osteoblast differentiation, as determined by mineralization and alkaline phosphatase assays, was not affected. Therefore, our results provide in vivo and in vitro evidence for a physiologic role of CEACAM1 in the regulation of osteoclastogenesis. 相似文献
8.
The underlying mechanisms that determine whether two species can form a successful graft union (graft compatibility) remain obscure. Two prominent hypotheses are (1) the more closely related species are, the higher the graft success and (2) the vascular anatomy at the graft junction influences graft success. In this paper these two hypotheses are examined in a systematic way using graft combinations selected from a range of (a) phylogenetically close and more distant legume species, (b) species displaying different germination patterns and (c) scions and rootstocks possessing contrasting stem tissues and vascular patterns. Relatedness of species was not a good predictor of graft compatibility, as vascular reconnection can occur between distantly related species and can fail to occur in some more closely related species. Similarly, neither the stem tissues present at the graft junction nor the vascular anatomy correlated with the success of vascular reconnection. Relatedness and stem anatomy therefore do not appear to be the determining factors in successful vascular reconnection after grafting in legumes. These results are discussed in conjunction with other hypotheses such as the role of auxin. 相似文献
9.
Recktenwald CV Leisz S Steven A Mimura K Müller A Wulfänger J Kiessling R Seliger B 《The Journal of biological chemistry》2012,287(29):24320-24329
The extracellular matrix protein biglycan (Bgn) is a leucine-rich proteoglycan that is involved in the matrix assembly, cellular migration and adhesion, cell growth, and apoptosis. Although a distinct expression of Bgn was found in a number of human tumors, the role of this protein in the initiation and/or maintenance of neoplastic transformation has not been studied in detail. Using an in vitro model of oncogenic transformation, a down-regulation of Bgn expression as well as an altered secretion of different Bgn isoforms was found both in murine and human HER-2/neu oncogene-transformed cells when compared with HER-2/neu(-) cells. This was associated with a reduced growth, wound closure, and migration capacity. Vice versa, silencing of Bgn in HER-2/neu(-) fibroblasts increased the growth rate and migration capacity of these cells. Bgn expression was neither modulated in HER-2/neu(+) cells by transforming growth factor-β(1) nor by inhibition of the phosphoinositol 3-kinase and MAP kinase pathways. In contrast, inhibition of the protein kinase C (PKC) pathway led to the reconstitution of Bgn expression. In particular, the PKC target protein cAMP response element binding protein (CREB) is a major regulator of Bgn expression as the silencing of CREB by RNA interference was accompanied by ~5000-fold increase in Bgn-mRNA expression in HER-2/neu(+) cells. Thus, Bgn inhibits the major properties of HER-2/neu-transformed cells, which is inversely modulated by the PKC signaling cascade. 相似文献
10.
Laser scanning cytometry for comet assay analysis 总被引:4,自引:0,他引:4
BACKGROUND: The comet assay (single-cell gel electrophoresis) is a sensitive method for evaluating nuclear DNA damage. Previously used evaluation methods for the comet assay are time consuming and have an inherent risk of biased selection of comets due to manual selection and categorization of comet images. Laser scanning cytometry (LSC), the principle of which is equivalent to flow cytometry, enables quantification of fluorescence emitted from the cells on a microscope slide. In the present study, we explored whether LSC could be used to determine the degree of DNA damage demonstrated by the comet assay. METHODS: DNA damage was induced by ultraviolet A irradiation of keratinocytes and visualized by the comet assay. The evaluation included (a) LSC determination of DNA-specific fluorescence in 1,000 comet heads (undamaged DNA), (b) image acquisition of comets by rescanning of the microscope slide, and (c) digital image analysis and computation of tail moment and DNA content in the comet tails. RESULTS: Cells with damaged DNA were observed in a sub-G(1) area because the comet head loses DNA to the tail. We found a strong inverse correlation between tail moment and DNA content per nucleus. CONCLUSIONS: LSC enables an automated method for cell recognition and evaluation of the comets, thus providing quantitative information about nuclear DNA damage without subjective selection of analyzed comets. 相似文献