首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41773篇
  免费   3325篇
  国内免费   2434篇
  47532篇
  2024年   60篇
  2023年   484篇
  2022年   1132篇
  2021年   1965篇
  2020年   1223篇
  2019年   1506篇
  2018年   1410篇
  2017年   1084篇
  2016年   1623篇
  2015年   2428篇
  2014年   2848篇
  2013年   3089篇
  2012年   3587篇
  2011年   3398篇
  2010年   1943篇
  2009年   1794篇
  2008年   2086篇
  2007年   1867篇
  2006年   1604篇
  2005年   1420篇
  2004年   1199篇
  2003年   1053篇
  2002年   905篇
  2001年   851篇
  2000年   740篇
  1999年   716篇
  1998年   435篇
  1997年   464篇
  1996年   441篇
  1995年   390篇
  1994年   378篇
  1993年   308篇
  1992年   441篇
  1991年   383篇
  1990年   331篇
  1989年   246篇
  1988年   236篇
  1987年   198篇
  1986年   141篇
  1985年   185篇
  1984年   121篇
  1983年   104篇
  1982年   80篇
  1981年   60篇
  1980年   55篇
  1979年   72篇
  1978年   66篇
  1977年   46篇
  1976年   48篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Designing protein sequences that fold to a given three-dimensional (3D) structure has long been a challenging problem in computational structural biology with significant theoretical and practical implications. In this study, we first formulated this problem as predicting the residue type given the 3D structural environment around the C α atom of a residue, which is repeated for each residue of a protein. We designed a nine-layer 3D deep convolutional neural network (CNN) that takes as input a gridded box with the atomic coordinates and types around a residue. Several CNN layers were designed to capture structure information at different scales, such as bond lengths, bond angles, torsion angles, and secondary structures. Trained on a very large number of protein structures, the method, called ProDCoNN (protein design with CNN), achieved state-of-the-art performance when tested on large numbers of test proteins and benchmark datasets.  相似文献   
993.
Abstract

The emergent need for new treatment methods for multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) has focused attention on novel potential tools like nanoparticles (NPs). In the present study, a drug-free cationic nanoparticles (CNPs) system was developed and its anti-MRSA effects were firstly investigated. The results showed that CNPs (261.7?nm, 26.1?mv) showed time- and concentration-dependent activity against MRSA growth, killing ~ 90% of planktonic bacterial cells in 3?h at 400?μg ml?1, and completely inhibiting biofilm formation at 1000?μg ml?1. Moreover, CNPs at 400?μg ml?1 reduced the minimum inhibitory concentration (MIC) of vancomycin on inhibition of planktonic MRSA growth (~ 25%) and biofilm formation (~ 50%). The CNPs–bacteria interaction force was up to 22 nN. Overall, these data suggest that CNPs have a good potential in clinical applications for the prevention and treatment of MRSA infection.  相似文献   
994.
The selectivity filter (SF) of bacterial voltage-gated sodium channels consists of four glutamate residues arranged in a C4 symmetry. The protonation state population of this tetrad is unclear. To address this question, we simulate the pore domain of bacterial voltage-gated sodium channel of Magnetococcus sp. (NavMs) through constant pH methodology in explicit solvent and free energy perturbation calculations. We find that at physiological pH the fully deprotonated as well as singly and doubly protonated states of the SF appear feasible, and that the calculated pKa decreases with each additional bound ion, suggesting that a decrease in the number of ions in the pore can lead to protonation of the SF. Previous molecular dynamics simulations have suggested that protonation can lead to a decrease in the conductance, but no pKa calculations were performed. We confirm a decreased ionic population of the pore with protonation, and also observe structural symmetry breaking triggered by protonation; the SF of the deprotonated channel is closest to the C4 symmetry observed in crystal structures of the open state, while the SF of protonated states display greater levels of asymmetry which could lead to transition to the inactivated state which possesses a C2 symmetry in the crystal structure. We speculate that the decrease in the number of ions near the mouth of the channel, due to either random fluctuations or ion depletion due to conduction, could be a self-regulatory mechanism resulting in a nonconducting state that functionally resembles inactivated states.  相似文献   
995.
996.
Intracellular delivery of functional proteins is of great interest for basic biological research as well as for clinical applications. Transfection is the most commonly used method, however, it is not applicable to large-scale manipulation and inefficient in important cell types implicated in biomedical applications, such as epithelial, immune and pluripotent stem cells. In this study, we explored a bacterial type III secretion system (Bac-T3SS)-mediated proteofection method to overcome these limitations. An attenuated Pseudomonas aeruginosa vector was constructed, which has features of low toxicity, high T3SS activity, and self-limiting growth. Compared to the method of transfection, the Bac-T3SS showed significantly higher efficiencies of Cre recombinase translocation and target site recombination for hard-to-transfect human cell lines. Furthermore, through the delivery of β-lactamase in live animals, we demonstrated the feasibility and biosafety of in vivo application of the Bac-T3SS. This study provided an efficient and low-cost proteofection strategy for laboratory use as well as for application in large-scale cell manipulations.  相似文献   
997.
998.
Fatty acids (FAs) play a crucial role in the development of clear cell renal cell carcinoma (ccRCC), FAs function requires the participation of fatty-acid-binding protein (FABP). Current studies have shown that different members of the FABP's family play different roles in the tumorigenesis of ccRCC. Therefore, the systematic analysis of FABPs will be of great significance. However, the diverse expression patterns and prognostic values of nine FABPs have yet to be elucidated. In this study, through multiple analysis and verification of multiple databases, such as ONCOMINE, The Human Protein Atlas, UALCAN, Gene Expression Profiling Interactive Analysis, and cBioPortal, we found that the expression of FABP1 was significantly downregulated and the expression of FABP5/6/7 was significantly upregulated in ccRCC compared with renal tissues, and the patients with high messenger RNA (mRNA) levels of the FABP5/6/7 or low mRNA levels of FABP1 were predicted to have a lower overall survival or disease-free survival. Further analysis by the protein–protein interaction (PPI), Gene Ontology pathway, and Kyoto Encyclopedia of Genes and Genomes pathway showed that FABPs were mainly involved in the peroxisome proliferator-activated receptor (PPAR) pathway. In coexpression analysis, we found that FABP1/5/6/7 was coexpressed with transforming growth factor-β1 (TGF-β1), PPARA, and LPL. This study implied that FABP1/5/6/7 could act as an important tumor biomarker of ccRCC; the role of FABPs may be related to PPAR or TGF-β pathway.  相似文献   
999.
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L−1. The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L−1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.  相似文献   
1000.
As an important bulk chemical, benzoic acid is currently manufactured from nonrenewable feedstocks under harsh conditions. Although there are natural pathways for biosynthesis of benzoic acid, they are often inefficient and subjected to complex regulation. Here we develop a nonnatural enzyme cascade to efficiently produce benzoic acid from styrene or biogenic L -phenylalanine under mild conditions. By using a modular approach, two whole-cell catalysts Escherichia coli LZ305 and LZ325 are engineered for coexpressing seven and nine enzymes for production of 133–146 mM benzoic acid (16.2–17.8 g/Laq) with 88–97% conversion via seven- and nine-step cascade biotransformation of styrene and L -phenylalanine, respectively. The seven-step cascade represents a formal high-yielding biocatalytic oxidative cleavage of styrene, and the nine-step cascade showcases the high efficiency of extended nonnatural enzyme cascades. Moreover, to achieve benzoic acid production directly from low-cost renewable glycerol, a novel coupled fermentation-biotransformation process was developed by integration of fermentative production of L -phenylalanine with in situ biotransformation to give 63–70 mM benzoic acid (7.6–8.6 g/Laq), which is around 20 times higher than the reported value via a natural pathway. The coupled fermentation-biotransformation process could be generally applicable to microbial production of growth-inhibitory or toxic chemicals in high concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号