全文获取类型
收费全文 | 41798篇 |
免费 | 3330篇 |
国内免费 | 2437篇 |
专业分类
47565篇 |
出版年
2024年 | 60篇 |
2023年 | 485篇 |
2022年 | 1133篇 |
2021年 | 1966篇 |
2020年 | 1226篇 |
2019年 | 1508篇 |
2018年 | 1411篇 |
2017年 | 1085篇 |
2016年 | 1623篇 |
2015年 | 2428篇 |
2014年 | 2848篇 |
2013年 | 3090篇 |
2012年 | 3587篇 |
2011年 | 3401篇 |
2010年 | 1945篇 |
2009年 | 1795篇 |
2008年 | 2088篇 |
2007年 | 1871篇 |
2006年 | 1606篇 |
2005年 | 1421篇 |
2004年 | 1199篇 |
2003年 | 1056篇 |
2002年 | 905篇 |
2001年 | 851篇 |
2000年 | 741篇 |
1999年 | 716篇 |
1998年 | 435篇 |
1997年 | 464篇 |
1996年 | 441篇 |
1995年 | 390篇 |
1994年 | 379篇 |
1993年 | 309篇 |
1992年 | 441篇 |
1991年 | 383篇 |
1990年 | 331篇 |
1989年 | 247篇 |
1988年 | 236篇 |
1987年 | 198篇 |
1986年 | 141篇 |
1985年 | 185篇 |
1984年 | 121篇 |
1983年 | 104篇 |
1982年 | 80篇 |
1981年 | 60篇 |
1980年 | 55篇 |
1979年 | 72篇 |
1978年 | 66篇 |
1977年 | 46篇 |
1976年 | 48篇 |
1973年 | 48篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves 总被引:2,自引:0,他引:2
X. F. Lu H. Zhang S. S. Lyu G. D. Du X. Q. Wang C. H. Wu D. G. Lyu 《Photosynthetica》2018,56(2):616-622
Our study investigated the physiological and biochemical basis for the effects of exogenous phenolic acids on the function of the photosynthetic apparatus and photosynthetic electron transport rate in strawberry seedlings. Potted seedlings of the strawberry (Fragaria × ananassa Duch.) were used. Syringic acid inhibited net photosynthetic rate and water-use efficiency decreased. Additionally, primary quinone electron acceptor of the PSII reaction centre, the PSII reaction centre and the oxygen evolving complex were also impaired. Both the maximum quantum yield of the PSII primary photochemistry and the performance index on absorption basis were depressed, resulting in reduced function of the photosynthetic electron transport chain. Otherwise, low phthalic acid concentrations enhanced photosynthetic capacity, while high concentrations showed opposite effects. Syringic acid exhibited a higher toxic effect than that of phthalic acid which was more evident at higher concentrations. 相似文献
993.
Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature. 相似文献
994.
Zongyun Chen Youtian Hu Bin Wang Zhijian Cao Wenxin Li Yingliang Wu 《Biochemistry and Biophysics Reports》2015
Although many studies concerning the sensitivity mechanism of scorpion toxin-potassium channel interactions have been reported, few have explored the biochemical insensitivity mechanisms of potassium channel receptors toward natural scorpion toxin peptides, such as the KCNQ1 channel. Here, by sequence alignment analyses of the human KCNQ1 channel and scorpion potassium channel MmKv2, which is completely insensitive to scorpion toxins, we proposed that the insensitivity mechanism of KCNQ1 toward natural scorpion toxins might involve two functional regions, the turret and filter regions. Based on this observation, a series of KCNQ1 mutants were constructed to study molecular mechanisms of the KCNQ1 channel insensitivity toward natural scorpion toxins. Electrophysiological studies of chimera channels showed that the channel filter region controls KCNQ1 insensitivity toward the classical scorpion toxin ChTX. Interestingly, further residue mutant experiments showed that a single basic residue in the filter region determined the insensitivity of KCNQ1 channels toward scorpion toxins. Our present work showed that amino acid residue diversification at common sites controls the sensitivity and insensitivity of potassium channels toward scorpion toxins. The unique insensitivity mechanism of KCNQ1 toward natural scorpion toxins will accelerate the rational design of potent peptide inhibitors toward this channel. 相似文献
995.
High‐throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus,Brassica rapa and Brassica oleracea 下载免费PDF全文
Jiangwei Qiao Mengxian Cai Guixin Yan Nian Wang Feng Li Binyun Chen Guizhen Gao Kun Xu Jun Li Xiaoming Wu 《Plant biotechnology journal》2016,14(1):409-418
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole‐genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C‐genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. 相似文献
996.
Xiaogang Zhou Jing Wang Chunfang Peng Xiaobo Zhu Junjie Yin Weitao Li Min He Jichun Wang Mawsheng Chern Can Yuan Wenguan Wu Weiwei Ma Peng Qin Bintian Ma Xianjun Wu Shigui Li Pamela Ronald Xuewei Chen 《Plant, cell & environment》2016,39(6):1381-1392
Receptor‐like cytoplasmic kinases (RLCKs) represent a large family of proteins in plants. However, few RLCKs have been well characterized. Here, we report the functional characterization of four rice RLCKs – OsRLCK57, OsRLCK107, OsRLCK118 and OsRLCK176 from subfamily VII. These OsRLCKs interact with the rice brassinosteroid receptor, OsBRI1 in yeast cell, but not the XA21 immune receptor. Transgenic lines silenced for each of these genes have enlarged leaf angles and are hypersensitive to brassinolide treatment compared to wild type rice. Transgenic plants silenced for OsRLCK57 had significantly fewer tillers and reduced panicle secondary branching, and lines silenced for OsRLCK107 and OsRLCK118 produce fewer seeds. Silencing of these genes decreased Xa21 gene expression and compromised XA21‐mediated immunity to Xanthomonas oryzae pv. oryzae. Our study demonstrates that these OsRLCKs negatively regulate BR signalling, while positively regulating immune responses by contributing to the expression of the immune receptor XA21. 相似文献
997.
998.
Diploid hybrid origin of Hippophaë gyantsensis (Elaeagnaceae) in the western Qinghai–Tibet Plateau 下载免费PDF全文
Dong‐Rui Jia Yu‐Jin Wang Teng‐Liang Liu Gui‐Li Wu Yi‐Xuan Kou Kai Cheng Jian‐Quan Liu 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):658-671
Homoploid hybrid speciation, the origin of a hybrid species without change in chromosome number, is currently considered to be a rare form of speciation. In the present study, we examined the phylogenetic origin of Hippophaë gyantsensis, a diploid species occurring in the western Qinghai–Tibet Plateau. Some of its morphological and molecular traits suggest a close relationship to H. rhamnoides ssp. yunnanensis while others indicate H. neurocarpa. We conducted phylogenetic analyses of sequence data of two maternally inherited chloroplast (cp) DNA fragments and the bi‐parentally inherited nuclear ribosomal internal transcribed spacer (ITS) from 17 populations of H. gyantsensis, 15 populations of H. rhamnoides ssp. yunnanensis and 27 populations of H. neurocarpa across their distributional ranges, and modelled the niche differentiation of the three taxa. Multiple lines of evidence suggested that H. gyantsensis is a morphologically stable, genetically independent and ecologically distinct species. The inconsistent phylogenetic placements of the H. gyantsensis clade that comprised the dominant cpDNA haplotypes and ITS ribotypes suggested a probable diploid hybrid origin from multiple crosses between H. rhamnoides ssp. yunnanensis and H. neurocarpa. This tentative hypothesis is more parsimonious than alternative explanations according to the data available, although more evidence based on further testing is needed. 相似文献
999.
Haijian Wu Huanjiang Niu Cheng Wu Yong Li Kun Wang Jianmin Zhang Yirong Wang Shuxu Yang 《Journal of cellular and molecular medicine》2016,20(9):1770-1778
The autophagy–lysosomal pathway is a self‐catabolic process by which dysfunctional or unnecessary intracellular components are degraded by lysosomal enzymes. Proper function of this pathway is critical for maintaining cell homeostasis and survival. Subarachnoid haemorrhage (SAH) is one of the most devastating forms of stroke. Multiple pathogenic mechanisms, such as inflammation, apoptosis, and oxidative stress, are all responsible for brain injury and poor outcome after SAH. Most recently, accumulating evidence has demonstrated that the autophagy–lysosomal pathway plays a crucial role in the pathophysiological process after SAH. Appropriate activity of autophagy–lysosomal pathway acts as a pro‐survival mechanism in SAH, while excessive self‐digestion results in cell death after SAH. Consequently, in this review article, we will give an overview of the pathophysiological roles of autophagy–lysosomal pathway in the pathogenesis of SAH. And approaching the molecular mechanisms underlying this pathway in SAH pathology is anticipated, which may ultimately allow development of effective therapeutic strategies for SAH patients through regulating the autophagy–lysosomal machinery. 相似文献
1000.
Liangliang Sun Yanyan Zhang Dingyin Tao Guijie Zhu Qun Zhao Qi Wu Zhen Liang Ling Yang Lihua Zhang Yukui Zhang 《Proteomics》2012,12(23-24):3464-3469
Comprehensive identification of cytochrome P450 enzymes (CYPs) and uridine diphosphoglucuronosyl transferases (UGTs) in human liver microsomes (HLMs) was performed with an SDS‐PAGE‐free protocol. HLMs were solubilized with 5% v/v ionic liquid, 1‐butyl‐3‐methyl imidazolium tetrafluoroborate, followed by tryptic digestion, and 2D‐SCX‐RPLC‐ESI‐MS/MS (LTQ XL) analysis in triplicate. In total, 27 CYPs and 12 UGTs were confidently identified with average sequence coverage as 30.99 and 25.07%, average peptide number as 14 and 13, and average unique peptide number as 7 and 4, respectively. The highly similar isoforms of CYP3A, CYP2C, and CYP4F subfamilies could be unambiguously differentiated from each other, despite the fact that the sequence similarity of CYP2C9 and CYP2C19 is 91%. In addition, protein spectral count was used to approximately evaluate the relative abundance of identified CYPs and UGTs, and the results agreed with previous immunochemistry reports. 相似文献