首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100232篇
  免费   20531篇
  国内免费   5105篇
  125868篇
  2024年   151篇
  2023年   922篇
  2022年   2160篇
  2021年   4125篇
  2020年   4331篇
  2019年   6365篇
  2018年   6413篇
  2017年   5932篇
  2016年   6914篇
  2015年   8263篇
  2014年   8774篇
  2013年   9661篇
  2012年   8384篇
  2011年   7567篇
  2010年   6638篇
  2009年   4899篇
  2008年   4513篇
  2007年   3679篇
  2006年   3290篇
  2005年   2860篇
  2004年   2429篇
  2003年   2138篇
  2002年   1868篇
  2001年   1747篇
  2000年   1477篇
  1999年   1441篇
  1998年   778篇
  1997年   813篇
  1996年   773篇
  1995年   696篇
  1994年   699篇
  1993年   563篇
  1992年   751篇
  1991年   622篇
  1990年   534篇
  1989年   434篇
  1988年   353篇
  1987年   296篇
  1986年   234篇
  1985年   268篇
  1984年   180篇
  1983年   153篇
  1982年   112篇
  1981年   68篇
  1980年   64篇
  1979年   83篇
  1978年   66篇
  1977年   46篇
  1976年   49篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The genome of the Friend murine leukemia virus (Fr‐MLV) contains a 5′ splice site (5′ss) located at 205 nt and a 3′ss located at 5489 nt. In our previous studies, it was shown that if the HindIII–BglII (879–1904 bp) fragment within gag is deleted from the proA8m1 vector, which carries the entire Fr‐MLV sequence, then cryptic splicing of env‐mRNA occurs. Here, attempts were made to identify the genomic segment(s) in this region that is/are essential to correct splicing. First, vectors with a serially truncated HindIII–BglII fragment were constructed. The vector, in which a 38 bp fragment (1612–1649 bp) is deleted or reversed in proA8m1, only produced splice variants. It was found that a 38 nt region within gag contains important elements that positively regulate splicing at the correct splice sites. Further analyses of a series of vectors carrying the 38 bp fragment and its flanking sequences showed that a region (1183–1611 nt) upstream of the 38 nt fragment also contains sequences that positively or negatively influence splicing at the correct splice sites. The SphI–NdeI (5140–5400 bp) fragment just upstream of the 3′ss was deleted from vectors that carried the 38 bp fragment and its flanking sequences, which yielded correctly spliced mRNA; interestingly, these deleted vectors showed cryptic splicing. These findings suggest that the 5140–5400 nt region located just upstream of the 3′ss is required for the splicing function of the 38 nt fragment and its flanking sequences.  相似文献   
952.
Some intracellular bacteria are known to cause long‐term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long‐term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re‐infection and also with the specific expression of stress‐ and survival‐related genes. Our findings identify bacterial traits implicated in the establishment of long‐term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.  相似文献   
953.
954.
955.
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant‐derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd‐induced neurotoxicity. Here, we show that celastrol protected against Cd‐induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd‐induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase‐3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd‐induced phosphorylation of c‐Jun N‐terminal kinase (JNK), but not extracellular signal‐regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over‐expression of dominant negative c‐Jun potentiated celastrol protection against Cd‐induced cell death. Furthermore, pre‐treatment with celastrol prevented Cd down‐regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3′‐kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over‐expression of wild‐type PTEN enhanced celastrol inhibition of Cd‐activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd‐induced neuronal cell death via targeting JNK and PTEN‐Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd‐induced neurodegenerative disorders.

  相似文献   

956.
Tolerance to drought stress in soil crust microorganisms is essential for exploiting suitable organisms for restoring soil. In this study, the responses to drought stress of two drought‐tolerant species, a green alga and a cyanobacterium, were compared with those of two non‐tolerant green algae. In response to drought stress, induced by treatment with polyethylene glycol, the intracellular proline levels increased and were associated with increases in malondialdehye, pigment contents, and enzyme activities such as superoxide dismutase (SOD) and peroxidase (POD). Our results suggest that tolerance to drought stress could be indicated by the intracellular levels of proline, SOD, and carotenoids. This study provides insights into the drought physiology of the photosynthetic microorganisms and suggests that Leptolyngbya boryana and Chlorella vulgaris are suitable pioneer organisms for soil restoration.  相似文献   
957.
958.
959.
The adaptive potential of tree species to cope with climate change has important ecological and economic implications. Many temperate tree species experience a wide range of environmental conditions, suggesting high adaptability to new environmental conditions. We investigated adaptation to regional climate in the drought‐sensitive tree species Alnus glutinosa (Black alder), using a complementary approach that integrates genomic, phenotypic and landscape data. A total of 24 European populations were studied in a common garden and through landscape genomic approaches. Genotyping‐by‐sequencing was used to identify SNPs across the genome, resulting in 1990 SNPs. Although a relatively low percentage of putative adaptive SNPs was detected (2.86% outlier SNPs), we observed clear associations among outlier allele frequencies, temperature and plant traits. In line with the typical drought avoiding nature of A. glutinosa, leaf size varied according to a temperature gradient and significant associations with multiple outlier loci were observed, corroborating the ecological relevance of the observed outlier SNPs. Moreover, the lack of isolation by distance, the very low genetic differentiation among populations and the high intrapopulation genetic variation all support the notion that high gene exchange combined with strong environmental selection promotes adaptation to environmental cues.  相似文献   
960.
The plant cell wall is a dynamic structure whose constant modification is necessary for plant cells to grow and divide. In the cell walls of chickpea (Cicer arietinum) there are at least four β‐galactosidases, whose presence and location in embryonic axes during the first 48 h of seed imbibition are discussed in this paper. We examined their roles as cell wall‐modifying enzymes in germinative and/or post‐germinative events. At the start of germination, only βV‐Gal, and to a lesser extent βIV‐Gal, appear in the axes before rupture of the testa, suggesting they are related to germination sensu stricto. Once the testa has broken, the four β‐galactosidases are involved in growth and differentiation of the axes. Immunolocation of the different proteins in axes, which in part confirms previous results in seedlings and plants, allows assignment of post‐germinative roles to βI‐Gal and βIII‐Gal as cell wall modifiers in vascular tissue elements. βIV‐Gal and βV‐Gal participate in the initial events of germination in which cell walls are involved: βV‐Gal in cell proliferation, detachment of root cap cells and initial vascular tissue differentiation; both of them in xylem maturation; and βIV‐Gal in thickening of the primary cell wall. Together with other cell wall‐modifying enzymes, such as expansins and XTH, chickpea galactosidases might function in a sequential order in turnover of the primary cell wall, allowing the elongation of embryonic axes during seed germination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号