首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100242篇
  免费   20522篇
  国内免费   5104篇
  125868篇
  2024年   151篇
  2023年   922篇
  2022年   2160篇
  2021年   4125篇
  2020年   4331篇
  2019年   6365篇
  2018年   6413篇
  2017年   5932篇
  2016年   6914篇
  2015年   8263篇
  2014年   8774篇
  2013年   9661篇
  2012年   8384篇
  2011年   7567篇
  2010年   6638篇
  2009年   4899篇
  2008年   4513篇
  2007年   3679篇
  2006年   3290篇
  2005年   2860篇
  2004年   2429篇
  2003年   2138篇
  2002年   1868篇
  2001年   1747篇
  2000年   1477篇
  1999年   1441篇
  1998年   778篇
  1997年   813篇
  1996年   773篇
  1995年   696篇
  1994年   699篇
  1993年   563篇
  1992年   751篇
  1991年   622篇
  1990年   534篇
  1989年   434篇
  1988年   353篇
  1987年   296篇
  1986年   234篇
  1985年   268篇
  1984年   180篇
  1983年   153篇
  1982年   112篇
  1981年   68篇
  1980年   64篇
  1979年   83篇
  1978年   66篇
  1977年   46篇
  1976年   49篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
He  Lei  Xu  Jing  Hu  Liangliang  Ren  Minglei  Tang  Jianjun  Chen  Xin 《Plant and Soil》2019,435(1-2):161-174
Plant and Soil - During the process of domestication of herbaceous seed-producing perennial crops, selection for high yield induces a shift in the resource-use strategy from conservative to...  相似文献   
942.
943.
944.
High soil carbonate limits crop performance especially in semiarid or arid climates. To understand how plants adapt to such soils, we explored natural variation in tolerance to soil carbonate in small local populations (demes) of Arabidopsis thaliana growing on soils differing in carbonate content. Reciprocal field‐based transplants on soils with elevated carbonate (+C) and without carbonate (?C) over several years revealed that demes native to (+C) soils showed higher fitness than those native to (?C) soils when both were grown together on carbonate‐rich soil. This supports the role of soil carbonate as a driving factor for local adaptation. Analyses of contrasting demes revealed key mechanisms associated with these fitness differences. Under controlled conditions, plants from the tolerant deme A1(+C) native to (+C) soil were more resistant to both elevated carbonate and iron deficiency than plants from the sensitive T6(?C) deme native to (?C) soil. Resistance of A1(+C) to elevated carbonate was associated with higher root extrusion of both protons and coumarin‐type phenolics. Tolerant A1(+C) also had better Ca‐exclusion than sensitive T6(?C). We conclude that Arabidopsis demes are locally adapted in their native habitat to soils with moderately elevated carbonate. This adaptation is associated with both enhanced iron acquisition and calcium exclusion.  相似文献   
945.
946.
Peng  Wei  Xu  Shangrong  Zhang  Jun  Zhang  Yong 《Biological trace element research》2019,188(1):189-195
Biological Trace Element Research - The thioredoxin-like (Rdx) family proteins contain four selenoproteins (selenoprotein H, SELENOH; selenoprotein T, SELENOT; selenoprotein V, SELENOV;...  相似文献   
947.
Hu  Huizhen  Zhang  Ran  Tang  Yiwei  Peng  Chenglang  Wu  Leiming  Feng  Shengqiu  Chen  Peng  Wang  Yanting  Du  Xuezhu  Peng  Liangcai 《Plant molecular biology》2019,101(4-5):389-401
Key message

Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production.

Abstract

Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.

  相似文献   
948.
949.
Zhang  Hui  Zhang  Lu  Han  Junyou  Qian  Zhiyuan  Zhou  Bingying  Xu  Yunmin  Wu  Gang 《Plant molecular biology》2019,100(6):571-578
Plant Molecular Biology - A mutation in the nuclear localization signal of squamosa promoter binding like-protein 9 (SPL9) delays vegetative phase change by disrupting its nuclear localization. The...  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号