首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   83篇
  国内免费   1篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   22篇
  2020年   8篇
  2019年   14篇
  2018年   18篇
  2017年   23篇
  2016年   38篇
  2015年   63篇
  2014年   76篇
  2013年   79篇
  2012年   87篇
  2011年   77篇
  2010年   58篇
  2009年   44篇
  2008年   59篇
  2007年   58篇
  2006年   60篇
  2005年   37篇
  2004年   39篇
  2003年   43篇
  2002年   40篇
  2001年   7篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   12篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   9篇
  1992年   13篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有1099条查询结果,搜索用时 15 毫秒
121.
NLP-12a and b have been identified as cholecystokinin/sulfakinin-like neuropeptides in the free-living nematode Caenorhabditis elegans. They are suggested to play an important role in the regulation of digestive enzyme secretion and fat storage. This study reports on the identification and characterization of an NLP-12-like peptide precursor gene in the rat parasitic nematode Strongyloides ratti. The S. ratti NLP-12 peptides are able to activate both C. elegans CKR-2 receptor isoforms in a dose-dependent way with affinities in the same nanomolar range as the native C. elegans NLP-12 peptides. The C-terminal RPLQFamide sequence motif of the NLP-12 peptides is perfectly conserved between free-living and parasitic nematodes. Based on systemic amino acid replacements the Arg-, Leu- and Phe- residues appear to be critical for high-affinity receptor binding. Finally, a SAR analysis revealed the essential pharmacophore in C. elegans NLP-12b to be the pentapeptide RPLQFamide.  相似文献   
122.
123.
Moolenaar WH  Hla T 《Cell》2012,148(1-2):378-378.e2
  相似文献   
124.
125.
126.
Cross-talk between the immune- and nervous-system is considered an important biological process in health and disease. Because mast cells are often strategically placed between nerves and surrounding (immune)-cells they may function as important intermediate cells. This review summarizes the current knowledge on bidirectional interaction between mast cells and nerves and its possible relevance in (inflammation-induced) increased nociception. Our main focus is on mast cell mediators involved in sensitization of TRP channels, thereby contributing to nociception, as well as neuron-released neuropeptides and their effects on mast cell activation. Furthermore we discuss mechanisms involved in physical mast cell-nerve interactions. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
127.
Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish.  相似文献   
128.

Background

Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.

Methodology/Principal Findings

In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.

Conclusions/Significance

These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.  相似文献   
129.
Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPε. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPε and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPε knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号