首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2875篇
  免费   229篇
  国内免费   3篇
  2024年   4篇
  2023年   12篇
  2022年   31篇
  2021年   59篇
  2020年   26篇
  2019年   56篇
  2018年   47篇
  2017年   74篇
  2016年   111篇
  2015年   134篇
  2014年   178篇
  2013年   199篇
  2012年   232篇
  2011年   222篇
  2010年   150篇
  2009年   129篇
  2008年   182篇
  2007年   169篇
  2006年   170篇
  2005年   115篇
  2004年   132篇
  2003年   103篇
  2002年   113篇
  2001年   35篇
  2000年   29篇
  1999年   32篇
  1998年   29篇
  1997年   30篇
  1996年   20篇
  1995年   21篇
  1994年   22篇
  1993年   25篇
  1992年   31篇
  1991年   15篇
  1990年   10篇
  1989年   14篇
  1988年   10篇
  1987年   12篇
  1986年   10篇
  1985年   11篇
  1984年   15篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   11篇
  1979年   10篇
  1978年   6篇
  1977年   8篇
  1973年   3篇
  1952年   3篇
排序方式: 共有3107条查询结果,搜索用时 328 毫秒
81.
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a protein involved in LDL-cholesterol metabolism. The single-nucleotide polymorphism (SNP) rs11591147 has been associated with lower LDL-cholesterol and a lower risk of coronary heart disease. Because PCSK9 has high affinity to the LDL receptor, inhibiting PCSK9 is a testable therapeutic target for lipid-lowering therapy. Currently, several approaches to inhibit PCSK9 are under development, but it is unknown what the effects of those inhibitors will be on cognition or noncardiovascular clinical events. In this study, we assessed the association between rs11591147 and cognitive performance, activities of daily living (ADL), and noncardiovascular clinical events within 5,777 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Rs11591147 was associated with 10% to 16% lower LDL cholesterol levels (P = 3.62 × 10−12), but was not associated with cognitive performance, ADL, or noncardiovascular clinical events in the PROSPER study. Our findings suggest that lower cholesterol levels due to genetic variation in the PCSK9 gene are not associated with cognitive performance, functional status, or noncardiovascular clinical events.  相似文献   
82.
γ‐Secretase plays a central role in the generation of the Alzheimer disease‐causing amyloid β‐peptide (Aβ) from the β‐amyloid precursor protein (APP) and is thus a major Alzheimer′s disease drug target. As several other γ‐secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ‐secretase‐targeting drugs. The γ‐secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well‐tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37–39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43‐increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ‐secretase substrates.  相似文献   
83.
Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface.  相似文献   
84.
ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP.  相似文献   
85.
This article examines China's domestic legal regime for the prevention of vessel source pollution. It pays special attention to the recently adopted Regulation on Prevention and Control of Marine Pollution from Vessels. Potential challenges and emerging issues that China has to confront are addressed, including: application of the legislation to disputed sea areas between China and its neighbors, freedom of navigation in the exclusive economic zone, reduction of emission from ships, and prevention of invasive species from ballast water.  相似文献   
86.
Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Combined AFM experiments and computational modeling on subsecond timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus capsid show that the capsid’s physical properties are dynamic and local characteristics of the structure, which change with the depth of indentation and depend on the magnitude and geometry of mechanical input. Under large deformations, the Cowpea Chlorotic Mottle Virus capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state ΔHind = 11.5–12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending; the entropy change TΔSind = 5.1–5.8 MJ/mol is due to coherent in-plane rearrangements of protein chains, which mediate the capsid stiffening. Direct coupling of these modes defines the extent of (ir)reversibility of capsid indentation dynamics correlated with its (in)elastic mechanical response to the compressive force. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses’ biological function.  相似文献   
87.
There is limited information available on changes in biodiversity at the European scale, because there is a lack of data from standardised monitoring for most species groups. However, a great number of observations made without a standardised field protocol is available in many countries for many species. Such opportunistic data offer an alternative source of information, but unfortunately such data suffer from non-standardised observation effort and geographical bias. Here we describe a new approach to compiling supranational trends using opportunistic data which adjusts for these two major imperfections. The non-standardised observation effort is dealt with by occupancy modelling, and the unequal geographical distribution of sites by a weighting procedure. The damselfly Calopteryx splendens was chosen as our test species. The data were collected from five countries (Ireland, Great Britain, the Netherlands, Belgium and France), covering the period 1990–2008. We used occupancy models to estimate the annual number of occupied 1 × 1 km sites per country. Occupancy models use presence-absence data, account for imperfect detection of species, and thereby correct for between-year variability in observation effort. The occupancy models were run per country in a Bayesian mode of inference using JAGS. The occupancy estimates per country were then aggregated to assess the supranational trend in the number of occupied 1 × 1 km2. To adjust for the unequal geographical distribution of surveyed sites, we weighted the countries according to the number of sites surveyed and the range of the species per country. The distribution of C. splendens has increased significantly in the combined five countries. Our trial demonstrated that a supranational trend in distribution can be derived from opportunistic data, while adjusting for observation effort and geographical bias. This opens new perspectives for international monitoring of biodiversity.  相似文献   
88.
89.
Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol–xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies.The secretory expression of recombinant proteins can offer significant process advantages over cytosolic production strategies, since secretion into the growth medium greatly facilitates downstream processing and therefore can significantly reduce the costs of producing a desired target protein (Quax, 1997). And, in fact, the enormous secretion capacity of certain Gram-positive bacteria (e.g. various Bacillus species) has been used since many years in industry for the production of mainly host-derived secretory proteins such as proteases and amylases, resulting in amounts of more than 20 g l−1 culture medium (Harwood and Cranenburg, 2008). In contrast, attempts to use Bacillus species for the secretory production of heterologous proteins have often failed or led to disappointing results, a fact that, among other reasons, could in many cases be attributed to the presence of multiple cell wall-associated and secreted proteases that rapidly degraded the heterologous target proteins (Li et al., 2004; Sarvas et al., 2004; Westers et al., 2011). Therefore, an increasing need exists to explore alternative host systems with respect to their ability to express and secrete problematic and/or complex heterologous proteins of biotechnological interest.So far, the Gram-positive bacterium Corynebacterium glutamicum has been used in industry mainly for the production of amino acids and other low-molecular weight compounds (Leuchtenberger et al., 2005; Becker and Wittmann, 2011; Litsanov et al., 2012). However, various recent reports have indicated that C. glutamicum might likewise possess a great potential as an alternative host system for the secretory expression of foreign proteins. Corynebacterium glutamicum belongs to a class of diderm Gram-positive bacteria that, besides the cytoplasmic membrane, possess an additional mycolic acid-containing outer membrane-like structure that acts as an extremely efficient permeability barrier for hydrophilic compounds (Hoffmann et al., 2008; Zuber et al., 2008). Despite this fact, an efficient secretion of various heterologous proteins into the growth medium of this microorganism has been observed (e.g. Billman-Jacobe et al., 1995; Meissner et al., 2007; Kikuchi et al., 2009; Tateno et al., 2009; Tsuchidate et al., 2011).In bacteria, two major export pathways exist for the transport of proteins across the cytoplasmic membrane that fundamentally differ with respect to the folding status of their respective substrate proteins during the actual translocation step. The general secretion (Sec) system transports its substrates in a more or less unfolded state and folding takes places on the trans side of the membrane after the actual transport event (Yuan et al., 2010; du Plessis et al., 2011). In contrast, the alternative twin-arginine translocation (Tat) system translocates its substrates in a fully folded form and therefore provides an attractive alternative for the secretory production of proteins that cannot be produced in a functional form via the Sec route (Brüser, 2007). Carbohydrate oxidases are biotechnologically interesting enzymes (van Hellemond et al., 2006) that are excluded from Sec-dependent secretion since they depend on a tightly or covalently bound cofactor for their activity and, for this reason, require that their folding and cofactor insertion has to take place in the cytosol. Because C. glutamicum has shown to be an excellent host for the Tat-dependent secretion of the cofactor-less model protein GFP (Meissner et al., 2007; Teramoto et al., 2011), we now asked whether it is likewise possible to secrete a cofactor-containing enzyme into the supernatant of C. glutamicum using the same protein export route.As a model protein, we chose the sorbitol–xylitol oxidase (SoXy) from Streptomyces coelicolor, a normally cytosolic enzyme that possesses a covalently bound FAD molecule as cofactor (Heuts et al., 2007; Forneris et al., 2008). FAD is incorporated into the apoprotein in a post-translational and self-catalytic process that only occurs if the polypeptide chain has adopted a correctly folded structure (Heuts et al., 2007; 2009). To direct SoXy into the Tat export pathway of C. glutamicum, we constructed a gene encoding a TorA–SoXy hybrid precursor in which SoXy is fused to the strictly Tat-specific signal peptide of the periplasmic Escherichia coli Tat substrate trimethylamine N-oxide reductase (TorA) (Fig. 1) which, in our previous study, has been proven to be a functional and strictly Tat-specific signal peptide also in C. glutamicum (Meissner et al., 2007). The corresponding torAsoxy gene was cloned into the expression vector pEKEx2 (Eikmanns et al., 1991) under the control of an IPTG-inducible Ptac promotor. After transformation of the resulting plasmid pTorA–SoXy into the C. glutamicum ATCC13032 wild-type strain, two independent colonies of the resulting recombinant C. glutamicum (pTorA–SoXy) strain and, as a control, a colony of a strain that contained the empty expression vector without insert [C. glutamicum (pEKEx2)] were grown in CGXII medium (Keilhauer et al., 1993) at 30°C for 16 h in the presence of 1 mM IPTG. Subsequently, the proteins present in the culture supernatants were analysed by SDS-PAGE followed by staining with Coomassie blue. As shown in Fig. 2, in the supernatants of the pTorA–SoXy-containing cells (lanes 3 and 4), a prominent protein band of approximately 44 kDa can be detected, the size of which is very similar to the calculated molecular mass (44.4 kDa) of SoXy. Since this band is completely lacking in the supernatant of the control strain (lane 2), this strongly suggests that this band corresponds to SoXy that has been secreted into the culture supernatant of C. glutamicum (pTorA–SoXy). And, in fact, this suggestion was subsequently confirmed in a direct way by MALDI-TOF mass spectrometry after extraction of the protein out of the gel followed by tryptic digestion (Schaffer et al., 2001) (data not shown).Open in a separate windowFigure 1The TorA–SoXy hybrid precursor protein. Upper part: Schematic drawing of the relevant part of the pTorA–SoXy expression vector. Ptac, IPTG-inducible tac promotor. RBS, ribosome binding site. To maintain the authentic TorA signal peptidase cleavage site, the first four amino acids of the mature TorA protein (black bar) were retained in the TorA–SoXy fusion protein. White bar: TorA signal peptide (TorASP); grey bar: SoXy (amino acids 2–418). Lower part: Amino acid sequence of the signal peptide and early mature region of the TorA–SoXy hybrid precursor. The twin-arginine consensus motif of the TorA signal peptide is underlined. The four amino acids derived from mature TorA are shown in italics. The signal peptidase cleavage site is indicated by an arrowhead.Open in a separate windowFigure 2Secretion of SoXy into the growth medium of C. glutamicum. Cells of C. glutamicum ATCC13032 containing the empty vector pEKEx2 and two independently transformed colonies of C. glutamicum (pTorA–SoXy) were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with CGXII medium (Keilhauer et al., 1993) and inoculated to an OD600 of 0.5 in 5 ml of fresh CGXII medium containing 1 mM IPTG. After 16 h of further growth at 30°C, the supernatant fractions were prepared as described previously (Meissner et al., 2007). Samples corresponding to an equal number of cells were subjected to SDS-PAGE followed by staining with Coomassie blue. Lane 1, molecular mass marker (kDa). Lane 2, C. glutamicum (pEKEx2); lanes 3 and 4, C. glutamicum (pTorA–SoXy). The position of the secreted SoXy protein is indicated by an arrow.Next, the supernatant of C. glutamicum (pTorA–SoXy) was analysed for SoXy enzyme activity by measuring the production of H2O2 that is formed during the enzymatic conversion of sorbitol to fructose (Meiattini, 1983). Six hours after induction of gene expression by 1 mM IPTG, an enzymatic activity of 10.3 ± 1.6 nmol min−1 ml−1 could be determined in the supernatant of C. glutamicum (pTorA–SoXy). In contrast, no such activity was found in the supernatant of the control strain C. glutamicum (pEKEx2). From these results we conclude that we have succeeded in the secretion of enzymatically active and therefore FAD cofactor-containing SoXy into the culture supernatant of C. glutamicum.Finally, we examined whether the secretion of SoXy had in fact occurred via the Tat pathway of C. glutamicum. Plasmid pTorA–SoXy was used to transform C. glutamcium ATCC13032 wild type and a C. glutamicum ΔTatAC mutant strain that lacks two essential components of the Tat transport machinery and therefore does not possess a functional Tat translocase (Meissner et al., 2007). The corresponding cells were grown in BHI medium (Difco) at 30°C in the presence of 1 mM IPTG for 6 h. Subsequently, the proteins present in the cellular and the supernatant fractions of the corresponding cells were analysed by SDS-PAGE followed by Western blotting using SoXy-specific antibodies. As shown in Fig. 3, polypeptides corresponding to the unprocessed TorA–SoXy precursor and some minor smaller degradation products of it can be detected in the cellular fractions of both the wild-type and the ΔTatAC deletion strains (lanes 3 and 5). In the supernatant fraction of the Tat+ wild-type strain (lane 4), but not that of the ΔTatAC strain (lane 6), a polypeptide corresponding to mature SoXy is present, clearly showing that export of SoXy in the wild-type strain had occurred in a strictly Tat-dependent manner. Another noteworthy finding is the observation that hardly any mature SoXy protein accumulated in the cellular fraction of the Tat+ wild-type strain (lane 3), indicating that SoXy is, after its Tat-dependent translocation across the cytoplasmic membrane and processing by signal peptidase, rapidly transported out of the intermembrane space across the mycolic acid-containing outer membrane into the supernatant. However, the mechanism of how proteins cross this additional permeability barrier is completely unknown so far (Bitter et al., 2009).Open in a separate windowFigure 3Transport of TorA–SoXy occurs in a strictly Tat-dependent manner. Plasmid pTorA–SoXy was transformed into C. glutamcium ATCC13032 (Tat+) and a C. glutamicum ΔTatAC mutant that lacks a functional Tat translocase (Meissner et al., 2007). As a control, the empty pEKEx2 expression vector was transformed into C. glutamicum ATCC13032 (Tat+). The respective strains were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with BHI and resuspended in 20 ml of fresh BHI medium containing 1 mM IPTG. After 6 h of further growth at 30°C, the cellular (C) and supernatant (S) fractions were prepared as described previously (Meissner et al., 2007). Samples of the C and S fractions were subjected to SDS-PAGE followed by immunoblotting using anti-SoXy antibodies as indicated at the top of the figure. Lanes 1 and 2: C. glutamicum ATCC13032 (pEKEx2); lanes 3 and 4: C. glutamicum ATCC13032 (pTorA–SoXy); lanes 5 and 6: C. glutamicum ΔTatAC (pTorA–SoXy). Asterisk: TorA–SoXy precursor; arrow: secreted SoXy protein. The positions of molecular mass markers (kDa) are indicated at the left margin of the figure.To the best of our knowledge, our results represent the first documented example of the successful secretion of a normally cytosolic, cofactor-containing protein via the Tat pathway in an active form into the culture supernatant of a recombinant expression host. Our results clearly show that, also for this biotechnologically very interesting class of proteins, a secretory production strategy can be a promising alternative to conventional intracellular expression strategies. Besides for SoXy and other FAD-containing carbohydrate oxidases, for which various applications are perceived by industry such as the in situ generation of hydrogen peroxide for bleaching and disinfection performance in technical applications, their use in the food and drink industry, as well as their use in diagnostic applications and carbohydrate biosynthesis processes (Oda and Hiraga, 1998; Murooka and Yamashita, 2001; van Hellemond et al., 2006; Heuts et al., 2007), a secretory production strategy might now be an attractive option also for biotechnologically relevant enzymes that are used as biocatalysts in chemo-enzymatic syntheses and that possess cofactors other than FAD, such as pyridoxal-5′-phosphate (PLP)-dependent ω-transaminases (Mathew and Yun, 2012) or various thiamin diphosphate (TDP)-dependent enzymes (Müller et al., 2009).  相似文献   
90.
Reduced representation genome sequencing such as restriction‐site‐associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single‐nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome‐wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome‐wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19 703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long‐term effective population size was estimated to range between 132 000 and 1 320 000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号