首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1044篇
  免费   95篇
  国内免费   1篇
  2024年   2篇
  2023年   5篇
  2022年   6篇
  2021年   21篇
  2020年   8篇
  2019年   14篇
  2018年   16篇
  2017年   23篇
  2016年   43篇
  2015年   64篇
  2014年   78篇
  2013年   79篇
  2012年   93篇
  2011年   82篇
  2010年   60篇
  2009年   46篇
  2008年   64篇
  2007年   60篇
  2006年   65篇
  2005年   40篇
  2004年   40篇
  2003年   44篇
  2002年   41篇
  2001年   11篇
  2000年   13篇
  1999年   11篇
  1998年   10篇
  1997年   12篇
  1996年   10篇
  1995年   11篇
  1994年   10篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1140条查询结果,搜索用时 69 毫秒
71.

Background

Serum troponin assays, widely used to detect acute cardiac ischemia, might be useful biomarkers to detect chronic cardiovascular disease (CVD). Cardiac-specific troponin-I (cTnI) and troponin-T (cTnT) generally detect myocardial necrosis equally well. In dialysis patients however, serum cTnT levels are often elevated, unlike cTnI levels. The present study aims to elucidate the associations of cTnI and cTnT with CVD in clinically stable dialysis patients.

Methods

Troponin levels were measured using 5th generation hs-cTnT assays (Roche) and STAT hs-cTnI assays (Abbott) in a cohort of dialysis patients. Serum troponin levels were divided into tertiles with the lowest tertile as a reference value. Serum troponins were associated with indicators of CVD such as left ventricular mass index (LVMI), left ventricular ejection fraction (LVEF) and the presence of coronary artery disease (CAD). Associations were explored using regression analysis.

Results

We included 154 consecutive patients, 68±7 years old, 77% male, 70% hemodialysis. Median serum cTnT was 51ng/L (exceeding the 99th percentile of the healthy population in 98%) and median serum cTnI was 13ng/L (elevated in 20%). A high cTnI (T3) was significantly associated with a higher LVMI (Beta 31.60; p=0.001) and LVEF (Beta -4.78; p=0.005) after adjusting for confounders whereas a high serum cTnT was not. CAD was significantly associated with a high cTnT (OR 4.70 p=0.02) but not with a high cTnI. Unlike cTnI, cTnT was associated with residual renal function (Beta:-0.09; p=0.006).

Conclusion

In the present cohort, serum cTnI levels showed a stronger association with LVMI and LVEF than cTnT. However, cTnT was significantly associated with CAD and residual renal function, unlike cTnI. Therefore, cTnI seems to be superior to cTnT as a marker of left ventricular dysfunction in asymptomatic dialysis patients, while cTnT might be better suited to detect CAD in these patients.  相似文献   
72.
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02 µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.  相似文献   
73.
The Transient Receptor Potential Vanilloid 4 channel, TRPV4, is a Ca2+ and Mg2+ permeable non-selective cation channel involved in many different cellular functions. It is activated by a variety of physical and chemical stimuli, including heat, mechano-stimuli, endogenous substances such as arachidonic acid and its cytochrome P450-derived metabolites (epoxyeicosatrienoic acids), endocannabinoids (anandamide and 2-arachidonoylglycerol), as well as synthetic α-phorbol derivatives. Recently, TRPV4 has been characterized as an important player modulating osteoclast differentiation in bone remodelling and as a urothelial mechanosensor that controls normal voiding. Several TRPV4 gain-of-function mutations are shown to cause autosomal-dominant bone dysplasias such as brachyolmia and Koszlowski disease. In this review we comprehensively describe the structural, biophysical and (patho)physiological properties of the TRPV4 channel and we summarize the current knowledge about the role of TRPV4 in the pathogenesis of several diseases.  相似文献   
74.
Organisms living in extreme habitats require costly adaptations to cope with these conditions. Among the suggested potential benefits that trade off these costs is refuge from predation. To study these interactions in extreme environments, samples were taken in the cave Cueva de Villa Luz, Tabasco, Mexico, where more than 32 subterranean springs, some H(2)S rich, rise from the floor. Hydrogen sulfide gas plus oxygen is absorbed by freshwater, and oxidation forms concentrated sulfuric acid. Snottites, whitish hollow mucous tubes, hang from the ceiling of the cave. Fluid drops from these snottites were recorded as having pH values of 0-3. We report the discovery of a new species of nematode that thrives in the highly acidic environment of the snottite. Micro CT scan of snottites reveals a complex interaction between the acidic snottite, nematodes, and abundant nematode-eating mites. The nematode adaptation to low pH probably protects them against mite predation, for which nematodes are most likely the most important source of carbon in this sulfur-driven ecosystem.  相似文献   
75.

Introduction  

Recently an association between a genetic variation in TRAF1/C5 and mortality from sepsis or cancer was found in rheumatoid arthritis (RA). The most prevalent cause of death, cardiovascular disease, may have been missed in that study, since patients were enrolled at an advanced disease stage. Therefore, we used an inception cohort of RA patients to investigate the association between TRAF1/C5 and cardiovascular mortality, and replicate the findings on all-cause mortality. As TRAF1/C5 associated mortality may not be restricted to RA, we also studied a large cohort of non-RA patients.  相似文献   
76.

Introduction  

Intraarticular administration of autologous conditioned serum (ACS) recently demonstrated some clinical effectiveness in treatment of osteoarthritis (OA). The current study aims to evaluate the in vitro effects of ACS on cartilage proteoglycan (PG) metabolism, its composition and the effects on synovial fluid (SF) cytokine levels following intraarticular ACS administration.  相似文献   
77.
To study the structure, function, and interactions of proteins, a plethora of techniques is available. Many techniques sample such parameters in non-physiological environments (e.g. in air, ice, or vacuum). Atomic force microscopy (AFM), however, is a powerful biophysical technique that can probe these parameters under physiological buffer conditions. With the atomic force microscope operating under such conditions, it is possible to obtain images of biological structures without requiring labeling and to follow dynamic processes in real time. Furthermore, by operating in force spectroscopy mode, it can probe intramolecular interactions and binding strengths. In structural biology, it has proven its ability to image proteins and protein conformational changes at submolecular resolution, and in proteomics, it is developing as a tool to map surface proteomes and to study protein function by force spectroscopy methods. The power of AFM to combine studies of protein form and protein function enables bridging various research fields to come to a comprehensive, molecular level picture of biological processes. We review the use of AFM imaging and force spectroscopy techniques and discuss the major advances of these experiments in further understanding form and function of proteins at the nanoscale in physiologically relevant environments.To understand biological processes at the molecular level it is essential to identify the involved proteins and proteinaceous assemblies, to characterize their structure and function, and to unravel their interplay with other proteins and molecules (1). Techniques like x-ray crystallography, electron microscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry have contributed massively to elucidate such protein properties. These techniques can easily sample the properties of a large ensemble of proteins; however, they require subjecting the sample to harsh treatments such as drying, crystallizing, or vaporizing in vacuum, thereby limiting the range of measurable dynamical properties of the sample. One powerful method that permits the investigation of molecules in their native physiological buffer condition is atomic force microscopy (AFM)1 (2). An atomic force microscope is a microscope and force spectrometer at the same time. The imaging resolution of the atomic force microscope is comparable with that of electron microscopes, and it has the special capability to image samples in a variety of environments such as in vacuum, air, or liquid, which therefore enables studying biological specimens in their native environments (i.e. in buffer solutions) (3, 4). In addition, its ability to “touch” the sample gives it the advantage to manipulate single particles/molecules and probe their mechanical properties (58). However, AFM force spectroscopy is currently a technique with rather fast pulling and pushing speeds, thereby often operating out of equilibrium conditions. Improvements with ultrastable atomic force microscopes are underway to tackle this problem with promising results (9, 10). Furthermore, AFM is not well suited to apply and resolve forces at the single piconewton range due to large size tips and relatively stiff cantilevers. The issue of nonspecificity of the tip interaction with the sample is also of concern, especially in pulling experiments that require the capability to accurately recognize and select the appropriate molecule or point of interest. The current introduction of carbon nanotube tips can address the former issue (11, 12), whereas techniques in chemical functionalization can provide directed tip specificity and recognition capability (1318), thereby further improving and widening the applicability of AFM in the future. In addition, the coupling of the atomic force microscope to fluorescence microscopes further enhances its versatility by adding (single molecule) fluorescence imaging to the AFM imaging capability (1921), and the development of high speed systems makes it possible for AFM to probe fast dynamics of various biological processes (2226).The applicability of AFM in proteomics is diverse and includes the characterization of the cell surface proteome (for a recent review, see Ref. 27), label-free detection and counting of single proteins (28, 29), and force spectroscopy measurements of binding and unbinding events (30, 31). In structural biology, AFM has shown to be a powerful tool for high resolution imaging of proteins in near native conditions (3, 6) and structural studies of supramolecular assemblies like protein filaments and viruses by nanoindentation methods (32, 33). These experiments show the potential of AFM to study both “form” and “function” of proteins, thereby resolving questions in proteomics and structural biology quasi-simultaneously. In the following, we will explain the principles of atomic force microscopy and its different operation modes and finally discuss examples of imaging, nanoindentation, and protein (un)binding and unfolding studies using AFM.  相似文献   
78.
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of l-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of l-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the l-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h(-1) g [dry weight](-1)) and ethanol production (0.29 g h(-1) g [dry weight](-1)) and a high ethanol yield (0.43 g g(-1)) during anaerobic growth on l-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved.  相似文献   
79.
Two recently collected slabs from the Lower Devonian Hunsrück Slate of Bundenbach, Hunsrück region, Germany, with spines of the acanthodianMachaeracanthus hunsrueckianum n. sp. are described. Both are associations of large and small spines and are the first to show groupings of symmetrical pairs; the spines are not homologous with those of other acanthodians. A pair of small spines ofMachaeracanthus peracutus Newberry, 1857 from the Karschheck quarry near Oberkirn, Hunsrück region, Germany, is articulated with the pectoral girdle and is the first such complex to be described. The only spines whichMachaeracanthus appears to have had were a pair of large and small pectoral spines on each side of the body. These spines could have helped to prevent the fish from sinking into the mud while resting on the sea floor.  相似文献   
80.
Corroboration of mechano-regulation algorithms is difficult, partly because repeatable experimental outcomes under a controlled mechanical environment are necessary, but rarely available. In distraction osteogenesis (DO), a controlled displacement is used to regenerate large volumes of new bone, with predictable and reproducible outcomes, allowing to computationally study the potential mechanisms that stimulate bone formation. We hypothesized that mechano-regulation by octahedral shear strain and fluid velocity can predict the spatial and temporal tissue distributions seen during experimental DO. Variations in predicted tissue distributions due to alterations in distraction rate and frequency could then also be studied. An in vivo ovine tibia experiment evaluating bone-segment transport (distraction, 1 mm/day) over an intramedullary nail was used for comparison. A 2D axisymmetric finite element model, with a geometry originating from the experimental data, was created and included into a previously developed model of tissue differentiation. Cells migrated and proliferated into the callus, differentiating into fibroblasts, chondrocytes or osteoblasts, dependent on the biophysical stimuli. Matrix production was modelled with an osmotic swelling model to allow tissues to grow at individual rates. The temporal and spatial tissue distributions predicted by the computational model agreed well with those seen experimentally. In addition, it was observed that decreased distraction rate (0.5 mm/d vs. 0.25 mm/d) increased the overall time needed for complete bone regeneration, whereas increased distraction frequency (0.5 mm/12 h vs. 0.25 mm/6 h) stimulated faster bone regeneration, as found in experimental findings by others. Thus, the algorithm regulated by octahedral shear strain and fluid velocity was able to predict the bone regeneration patterns dependent on distraction rate and frequency during DO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号