首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   84篇
  国内免费   1篇
  1079篇
  2024年   2篇
  2023年   6篇
  2022年   7篇
  2021年   21篇
  2020年   8篇
  2019年   14篇
  2018年   16篇
  2017年   23篇
  2016年   38篇
  2015年   62篇
  2014年   74篇
  2013年   78篇
  2012年   87篇
  2011年   76篇
  2010年   59篇
  2009年   44篇
  2008年   60篇
  2007年   59篇
  2006年   60篇
  2005年   37篇
  2004年   42篇
  2003年   42篇
  2002年   39篇
  2001年   7篇
  2000年   9篇
  1999年   6篇
  1998年   8篇
  1997年   14篇
  1996年   10篇
  1995年   10篇
  1994年   10篇
  1993年   11篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1079条查询结果,搜索用时 0 毫秒
61.
Human adults have functionally active BAT. The metabolic function can be reliably measured in vivo using modern imaging modalities (namely PET/CT). Cold seems to be one of the most potent stimulators of BAT metabolic activity but other stimulators (for example insulin) are actively studied. Obesity is related to lower metabolic activity of BAT but it may be reversed after successful weight reduction such as after bariatric surgery. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   
62.
The cyclic adenosine monophosphate‐protein kinase A (cAMP‐PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP‐PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP‐PKA activity in this pathogen, we here present the usage of two FRET‐based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time‐resolved manner, as we exemplify by glucose‐induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP‐PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment.  相似文献   
63.
The aim of this study was to determine a genetic basis for IgA concentration in milk of Bos taurus. We used a Holstein-Friesian x Jersey F2 crossbred pedigree to undertake a genome-wide search for QTL influencing IgA concentration and yield in colostrum and milk. We identified a single genome-wide significant QTL on chromosome 16, maximising at 4.8 Mbp. The polymeric immunoglobulin receptor gene (PIGR) was within the confidence interval of the QTL. In addition, mRNA expression analysis revealed a liver PIGR expression QTL mapping to the same locus as the IgA quantitative trait locus. Sequencing and subsequent genotyping of the PIGR gene revealed three divergent haplotypes that explained the variance of both the IgA QTL and the PIGR expression QTL. Genetic selection based on these markers will facilitate the production of bovine herds producing milk with higher concentrations of IgA.  相似文献   
64.
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.  相似文献   
65.
Analyzing the thyroid hromone (TH)‐dependent period of the inner ear, we observed that the presence of triiodothyronine (T3) between postnatal day 3 (P3) and P12 is sufficient for functional maturation of the auditory system. Within this short time period, an unusual transient TH‐dependent expression of nonneuronal neurotrophin receptors (NT‐R) trkB and p75NGFR was observed in correlation with neuronal and morphogenetic processes. The availability of thyroid hormone was revealed to be invariably correlated with (a) a transient expression of full‐length trkB in TRα1‐, TRα2‐ and TRβ1‐expressing hair cells concomitant to the segregation of afferent fibers and the synaptogenesis of efferent fibers; and (b) a transient expression of p75NGFR in TRα1‐ and TRβ1‐expressing great epithelia ridge cells in direct spatiotemporal correlation with the appearance of apoptotic cells and morphogenetic maturation of the organ. For the first time, these data suggest a TH dependency of the expression of neurotrophin receptors in nonneuronal cells. A potential role of these peculiar neurotrophin receptor expression for the conversion of the biological function of TH on innervation patterning and morphogenesis during the critical TH‐dependent period of the inner ear may be considered. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 338–356, 1999  相似文献   
66.
Summary Using antibodies against the fetal and adult forms of - and -globin, it has been shown that erythropoiesis in the para-aortic foci (PAF) constitutes a major species-specific difference between chicken and quail embryos. In quail embryos, para-aortic foci are rare, small and rather heterogeneous with regard to their erythropoietic and haemopoietic cell composition. In contrast, the PAFs in chicken embryos are abundant and consist of large numbers of erythropoietic cells.In both species a time difference (approximately 1 day) is observed between the first expression of the fetal - and -globin and the adult - and -globin in erythropoietic cells. Adult erythropoiesis in both species can be detected first in the stalk of the yolk sac; this is similar to the situation in mammalian and amphibian species. From this time onward the number of circulating adult erythrocytes increases steadily. Whereas in chicken, large intraembryonic foci that can serve as sources for these adult cells arise concomitantly, no such foci can be detected in quail embryos, suggesting that the quail yolk sac is a major source for these adult red blood cells.  相似文献   
67.
The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.  相似文献   
68.
We report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities. The results from Mg(2+)-Ca(2+) competition experiments show that Ca(2+) can replace Mg(2+) from site I, but not site II, and that Mg(2+) binding affects the affinity for Ca(2+). Furthermore, thermal unfolding circular dichroism data demonstrate that Mg(2+) binding stabilizes the domain. NMR chemical shift perturbations and (15)N relaxation data reveal that Mg(2+)-bound CBD2 adopts a state intermediate between the apo and fully Ca(2+)-loaded forms. Together, the data show that at physiological Mg(2+) concentrations CBD2 is loaded with Mg(2+) preferentially at site II, thereby stabilizing and structuring the domain and altering its affinity for Ca(2+).  相似文献   
69.
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.  相似文献   
70.
A novel method was developed for the quantitative analysis of the microbial metabolome using a mixture of fully uniformly (U) (13)C-labeled metabolites as internal standard (IS) in the metabolite extraction procedure the subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. This mixture of fully U (13)C-labeled metabolites was extracted from biomass of Saccharomyces cerevisiae cultivated in a fed-batch fermentation on fully U (13)C-labeled substrates. The obtained labeled cell extract contained, in principle, the whole yeast metabolome, allowing the quantification of any intracellular metabolite of interest in S. cerevisiae. We have applied the labeled cell extract as IS in the analysis of glycolytic and tricarboxylic acid (TCA) cycle intermediates in S. cerevisiae sampled in both steady-state and transient conditions following a glucose pulse. The use of labeled IS effectively reduced errors due to variations occurring in the analysis and sample processing. As a result, the linearity of calibration lines and the precision of measurements were significantly improved. Coextraction of the labeled cell extract with the samples also eliminates the need to perform elaborate recovery checks for each metabolite to be analyzed. In conclusion, the method presented leads to less workload, more robustness, and a higher precision in metabolome analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号