首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   16篇
  国内免费   1篇
  2023年   2篇
  2018年   2篇
  2016年   5篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1961年   2篇
  1956年   1篇
  1919年   1篇
  1875年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
55.
56.
The warmer and drier climates projected for the mid‐ to late‐21st century may have particularly adverse impacts on the cool temperate rainforests of southeastern Australia. Southern beech (Nothofagus cunninghamii; Nothofagaceae), a dominant tree species in these forests, may be vulnerable to minor changes in its climate envelope, especially at the edge of the species range, with Holocene fossil evidence showing local extinction of populations in response to small climate changes. We modelled the stability of this species climate envelope using the maximum entropy algorithm implemented in Maxent and two thresholds of presence/absence by projecting the modern climate envelope onto four Global Circulation Models forecasted for two time periods (2050s and 2070s). The climate envelope, as estimated from the species present climatic range, is predicted to shrink by up to 49% by the 2050s and up to 64% by the 2070s. The greatest predicted reduction is in Victoria with 91–100% of its current range being climatically unsuitable by the 2070s. Climatically similar areas to the species present range are predicted to remain in mountainous areas of western Tasmania, the Northeast Highlands of Tasmania, and the Baw Baw Plateau in the Central Highlands of Victoria. However, region‐specific modelling approaches made very different predictions from the whole‐range based models, especially in the severity of the predicted decline for Victorian populations of N. cunninghamii which occur in much warmer climates than the rest of the species geographical range. This shows that, for widespread species that span a range of climate zones, the exposure of current populations to climate change may be better modelled using a regional based approach. How the species responds to climate change will depend on the species ability to respond to drier and warmer climates and the concomitant increase in fire intensity.  相似文献   
57.
CD4+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5+ cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143–569 cells/ul) participated. CCR5-expression defined a CD4+ subpopulation of predominantly CD45R0+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5+ vs CCR5; healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4+ T-cells (predominantly CD45RA+ naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5+CD45R0+CD4+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4+ T-cell loss is primarily driven by non-specific immune activation.  相似文献   
58.
59.
In this study, four commonly-used sampling devices (vacuum socks, 37 mm 0.8 μm mixed cellulose ester (MCE) filter cassettes, 37 mm 0.3 μm polytetrafluoroethylene (PTFE) filter cassettes, and 3M™ forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. Aerosolized spores (~ 105 CFU cm− 2) of a Bacillus anthracis surrogate were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each material type. Stainless steel surfaces, inoculated simultaneously with test materials, were sampled with pre-moistened wipes. Wipe recoveries were utilized to normalize vacuum-based recoveries across trials. Recovery (CFU cm− 2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Recoveries and relative recoveries ranged from 3.8 × 103 to 7.4 × 104 CFU cm− 2 and 0.035 to 1.242, respectively. ANOVA results indicated that the 37 mm MCE method exhibited higher relative recoveries than the other methods when used for sampling concrete or upholstery. While the vacuum sock resulted in the highest relative recoveries on carpet, no statistically significant difference was detected. The results of this study may be used to guide selection of sampling approaches following biological contamination incidents.  相似文献   
60.
ECVAM sponsored a formal validation study on three in vitro tests for skin irritation, of which two employ reconstituted human epidermis models (EPISKIN, EpiDerm), and one, the skin integrity function test (SIFT), employs ex vivo mouse skin. The goal of the study was to assess whether the in vitro tests would correctly predict in vivo classifications according to the EU classification scheme, "R38" and "no label" (i.e. non-irritant). 58 chemicals (25 irritants and 33 non-irritants) were tested, having been selected to give broad coverage of physico-chemical properties, and an adequate distribution of irritancy scores derived from in vivo rabbit skin irritation tests. In Phase 1, 20 of these chemicals (9 irritants and 11 non-irritants) were tested with coded identities by a single lead laboratory for each of the methods, to confirm the suitability of the protocol improvements introduced after a prevalidation phase. When cell viability (evaluated by the MTT reduction test) was used as the endpoint, the predictive ability of both EpiDerm and EPISKIN was considered sufficient to justify their progression to Phase 2, while the predictive ability of the SIFT was judged to be inadequate. Since both the reconstituted skin models provided false predictions around the in vivo classification border (a rabbit Draize test score of 2), the release of a cytokine, interleukin-1alpha (IL-1alpha), was also determined. In Phase 2, each human skin model was tested in three laboratories, with 58 chemicals. The main endpoint measured for both EpiDerm and EPISKIN was cell viability. In samples from chemicals which gave MTT assay results above the threshold of 50% viability, IL-1alpha release was also measured, to determine whether the additional endpoint would improve the predictive ability of the tests. For EPISKIN, the sensitivity was 75% and the specificity was 81% (MTT assay only); with the combination of the MTT and IL-1alpha assays, the sensitivity increased to 91%, with a specificity of 79%. For EpiDerm, the sensitivity was 57% and the specificity was 85% (MTT assay only), while the predictive capacity of EpiDerm was not improved by the measurement of IL-1alpha release. Following independent peer review, in April 2007 the ECVAM Scientific Advisory Committee endorsed the scientific validity of the EPISKIN test as a replacement for the rabbit skin irritation method, and of the EpiDerm method for identifying skin irritants as part of a tiered testing strategy. This new alternative approach will probably be the first use of in vitro toxicity testing to replace the Draize rabbit skin irritation test in Europe and internationally, since, in the very near future, new EU and OECD Test Guidelines will be proposed for regulatory acceptance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号