首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   16篇
  国内免费   1篇
  2023年   2篇
  2018年   2篇
  2016年   5篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1961年   2篇
  1956年   1篇
  1919年   1篇
  1875年   1篇
排序方式: 共有201条查询结果,搜索用时 218 毫秒
121.
122.
123.
124.
Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail.In summary, the present work introduces immune-specific interaction potentials and their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy.  相似文献   
125.
126.

Background

Long-term central venous catheters are essential for the management of chronic medical conditions, including childhood cancer. Catheter occlusion is associated with an increased risk of subsequent complications, including bloodstream infection, venous thrombosis, and catheter fracture. Therefore, predicting and pre-emptively treating occlusions should prevent complications, but no method for predicting such occlusions has been developed.

Methods

We conducted a prospective trial to determine the feasibility, acceptability, and efficacy of catheter-resistance monitoring, a novel approach to predicting central venous catheter occlusion in pediatric patients. Participants who had tunneled catheters and were receiving treatment for cancer or undergoing hematopoietic stem cell transplantation underwent weekly catheter-resistance monitoring for up to 12 weeks. Resistance was assessed by measuring the inline pressure at multiple flow-rates via a syringe pump system fitted with a pressure-sensing transducer. When turbulent flow through the device was evident, resistance was not estimated, and the result was noted as “non-laminar.”

Results

Ten patients attended 113 catheter-resistance monitoring visits. Elevated catheter resistance (>8.8% increase) was strongly associated with the subsequent development of acute catheter occlusion within 10 days (odds ratio = 6.2; 95% confidence interval, 1.8–21.5; p <0.01; sensitivity, 75%; specificity, 67%). A combined prediction model comprising either change in resistance greater than 8.8% or a non-laminar result predicted subsequent occlusion (odds ratio = 6.8; 95% confidence interval, 2.0–22.8; p = 0.002; sensitivity, 80%; specificity, 63%). Participants rated catheter-resistance monitoring as highly acceptable.

Conclusions

In this pediatric hematology and oncology population, catheter-resistance monitoring is feasible, acceptable, and predicts imminent catheter occlusion. Larger studies are required to validate these findings, assess the predictive value for other clinical outcomes, and determine the impact of pre-emptive therapy.

Trial Registration

Clinicaltrials.gov NCT01737554  相似文献   
127.
Without proper knowledge of mechanical ventilation effects, physicians can aggravate an existing lung injury. A better understanding of the interaction between airflow and airway tissue during mechanical ventilation will be helpful to physicians so that they can provide appropriate ventilator parameters for intubated patients. In this study, a computational model incorporating the interactions between airflow and airway walls was developed to investigate the effects of airway tissue flexibility on airway pressure and stress. Two flow rates, 30 and 60 l/min, from mechanical ventilation were considered. The transient waveform was active inhalation with a constant flow rate and passive exhalation. Results showed that airway tissue flexibility decreased airway pressure at bifurcation sites by approximately 25.06% and 16.91% for 30 and 60 l/min, respectively, and increased wall shear stress (WSS) by approximately 74.00% and 174.91% for 30 and 60 l/min, respectively. The results from the present study suggested that it is very important to consider the interaction between airflow and airway walls when computational models are developed. Results of this study help to better quantify how the airflow rate used in mechanical ventilation, in conjunction with airway tissue flexibility, affects airway pressure and stresses.  相似文献   
128.
129.
The pathogenesis of Shigella requires binding to the host protein N-WASP. To examine the roles of structural conformation and phospho-regulation of N-WASP during Shigella pathogenesis, mutant N-WASP constructs predicted to result in a constitutively open conformation (L229P and L232P) or either a phospho-mimicking (Y253E) or phospho-disruptive (Y253F) structure were constructed. Pyrene actin assays demonstrated that the N-WASP L229P and L232P constructs are constitutively active. Despite the increase in actin polymerization seen in vitro, cell lines expressing N-WASP L229P and L232P supported shorter actin tails when infected with Shigella.Shigella actin tails were unchanged in cells expressing N-WASP phospho-regulation mutant proteins. Shigella invasion, intracellular, and intercellular motility were not altered in cells expressing N-WASP L229P or L232P. However, plaque numbers were increased in cells expressing N-WASP L229P and L232P. These data demonstrate that N-WASP structural conformation is an important regulator of Shigella pathogenesis in distinct segments of its lifecycle.  相似文献   
130.
The MutS-based mismatch repair (MMR) system has been conserved from prokaryotes to humans, and plays important roles in maintaining the high fidelity of genomic DNA. MutS protein recognizes several different types of modified base pairs, including methylated guanine-containing base pairs. Here, we looked at the relationship between recognition and the effects of methylating versus ethylating agents on mutagenesis, using a MutS-deficient strain of E. coli. We find that while methylating agents induce mutations more effectively in a MutS-deficient strain than in wild-type, this genetic background does not affect mutagenicity by ethylating agents. Thus, the role of E. coli MMR with methylation-induced mutagenesis appears to be greater than ethylation-induced mutagenesis. To further understand this difference an early step of repair was examined with these alkylating agents. A comparison of binding affinities of MutS with O6-alkylated guanine base paired with thymine, which could lead to transition mutations, versus cytosine which could not, was tested. Moreover, we compared binding of MutS to oligoduplexes containing different base pairs; namely, O6-MeG:T, O6-MeG:C, O6-EtG:T, O6-EtG:C, G:T and G:C. Dissociation constants (Kd), which reflect the strength of binding, followed the order G:T- > O6-MeG:T- > O6-EtG:T- = O6-EtG:C- ≥ O6-MeG:C- > G:C. These results suggest that a thymine base paired with O6-methyl guanine is specifically recognized by MutS and therefore should be removed more efficiently than a thymine opposite O6-ethylated guanine. Taken together, the data suggest that in E. coli, the MMR system plays a more significant role in repair of methylation-induced lesions than those caused by ethylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号