首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   13篇
  171篇
  2023年   2篇
  2018年   2篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1961年   2篇
  1956年   1篇
  1919年   1篇
  1875年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
121.
122.
This study examines the interaction between Escherichia coli MutS,L and E. coli RuvAB during E. coli RecA-promoted strand exchange. RuvAB is a branch migration complex that stimulates heterologous strand exchange. Previous studies indicate that RuvAB increases the rate at which heteroduplex products are formed by RecA, that RuvA and RuvB are required for this stimulation, and that RuvAB does not stimulate homologous strand exchange. This study indicates that MutS,L inhibit the formation of full-length heteroduplex DNA between M13-fd DNA in the presence of RuvAB, such that less than 2% of the linear substrate is converted to product. Inhibition depends on the time at which MutS,L are added to the reaction and is strongest when MutS,L are added during initiation. The kinetics of the strand exchange reaction suggest that MutS,L directly inhibit RuvAB-dependent branch migration in the absence of RecA. The inhibition requires the formation of base-base mismatches and ATP utilization; no effect on RuvAB-promoted strand exchange is seen if an ATP-deficient mutant of MutS (MutS501) is included in the reaction instead of wild-type MutS. These results are consistent with a role for MutS,L in maintaining genomic stability and replication fidelity.  相似文献   
123.
The pathogenesis of Shigella requires binding to the host protein N-WASP. To examine the roles of structural conformation and phospho-regulation of N-WASP during Shigella pathogenesis, mutant N-WASP constructs predicted to result in a constitutively open conformation (L229P and L232P) or either a phospho-mimicking (Y253E) or phospho-disruptive (Y253F) structure were constructed. Pyrene actin assays demonstrated that the N-WASP L229P and L232P constructs are constitutively active. Despite the increase in actin polymerization seen in vitro, cell lines expressing N-WASP L229P and L232P supported shorter actin tails when infected with Shigella.Shigella actin tails were unchanged in cells expressing N-WASP phospho-regulation mutant proteins. Shigella invasion, intracellular, and intercellular motility were not altered in cells expressing N-WASP L229P or L232P. However, plaque numbers were increased in cells expressing N-WASP L229P and L232P. These data demonstrate that N-WASP structural conformation is an important regulator of Shigella pathogenesis in distinct segments of its lifecycle.  相似文献   
124.
A number of computational fluid dynamics (CFD) studies have explored local deposition patterns of inhaled aerosols in the respiratory tract. These studies have highlighted the effects of multiple physiologic, geometric, and particle characteristics on deposition. However, very few studies have reported local or sub-branch quantitative comparisons to in vitro particle deposition data. The objective of this study is to numerically investigate the effects of transition and turbulence on highly localized particle deposition in a respiratory double bifurcation model in order to quantitatively validate CFD results. To perform the validations, local comparisons have been made to a specific in vitro case study of 10 microm particles depositing in a model of respiratory generations G3-G5. To achieve this objective, two geometric cases have been considered. The first case includes only the double bifurcation model. The second case includes a portion of the experimental particle delivery geometry, where transitional flow is expected. To evaluate the effectiveness of two-equation turbulence models in this system, the flow field solutions have been computed using laminar, standard k-omega, and low Reynolds number (LRN) k-omega approximations. Results indicate that even though the Reynolds number remained below the critical limit required for full turbulence, transition and turbulence have a significant impact on the flow field and local particle deposition patterns. For the experimental case considered, turbulence impacted the local deposition of 10 microm particles primarily by influencing the initial velocity and particle profiles. As such, both the laminar and LRN k-omega flow models provided good local quantitative matches to the in vitro deposition data, provided that the correct initial particle profile was specified. Implications of this study include the need for local quantitative validations of particle deposition results, the importance of correct inlet conditions, and the need to consider upstream effects in experimental and computational studies of the respiratory tract. Applications of these results to realistic respiratory geometries will require consideration on upstream flow conditions in the lung, transient flow, and intermittent turbulent structures.  相似文献   
125.
ImmTher, a liposome-encapsulated lipophilic disaccharide tripeptide derivative of muramyl dipeptide, previously showed activity against liver and lung colorectal metastases in a phase I trial. The purpose of the current studies was to investigate whether ImmTher could up-regulate specific cytokine gene expression and protein production, as well as activate the tumoricidal or cytostatic activity of human monocytes. ImmTher induced the expression and production of interleukin(IL)-1α IL-1β, IL-6, IL-8, IL-12, macrophage chemotactic and activating factor, and tumor necrosis factor α but not IL-2 or IL-10. Cytostatic or cytotoxic monocyte activity was stimulated against human Ewing's sarcoma, osteosarcoma, and melanoma cells but not breast cancer cells. Production and secretion of these cytokine proteins may play a role in the antitumor activity of ImmTher. Received: 15 December 1998 / Accepted: 18 March 1999  相似文献   
126.
Without proper knowledge of mechanical ventilation effects, physicians can aggravate an existing lung injury. A better understanding of the interaction between airflow and airway tissue during mechanical ventilation will be helpful to physicians so that they can provide appropriate ventilator parameters for intubated patients. In this study, a computational model incorporating the interactions between airflow and airway walls was developed to investigate the effects of airway tissue flexibility on airway pressure and stress. Two flow rates, 30 and 60 l/min, from mechanical ventilation were considered. The transient waveform was active inhalation with a constant flow rate and passive exhalation. Results showed that airway tissue flexibility decreased airway pressure at bifurcation sites by approximately 25.06% and 16.91% for 30 and 60 l/min, respectively, and increased wall shear stress (WSS) by approximately 74.00% and 174.91% for 30 and 60 l/min, respectively. The results from the present study suggested that it is very important to consider the interaction between airflow and airway walls when computational models are developed. Results of this study help to better quantify how the airflow rate used in mechanical ventilation, in conjunction with airway tissue flexibility, affects airway pressure and stresses.  相似文献   
127.
Research studies over the last three decades have established that hemodynamic interactions with the vascular surface as well as surgical injury are inciting mechanisms capable of eliciting distal anastomotic intimal hyperplasia (IH) and ultimate bypass graft failure. While abnormal wall shear stress (WSS) conditions have been widely shown to affect vascular biology and arterial wall self-regulation, the near-wall localization of critical blood particles by convection and diffusion may also play a significant role in IH development. It is hypothesized that locations of elevated platelet interactions with reactive or activated vascular surfaces, due to injury or endothelial dysfunction, are highly susceptible to IH initialization and progression. In an effort to assess the potential role of platelet-wall interactions, experimentally validated particle-hemodynamic simulations have been conducted for two commonly implemented end-to-side anastomotic configurations, with and without proximal outflow. Specifically, sites of significant particle interactions with the vascular surface have been identified by a novel near-wall residence time (NWRT) model for platelets, which includes shear stress-based factors for platelet activation as well as endothelial cell expression of thrombogenic and anti-thrombogenic compounds. Results indicate that the composite NWRT model for platelet-wall interactions effectively captures a reported shift in significant IH formation from the arterial floor of a relatively high-angle (30 deg) graft with no proximal outflow to the graft hood of a low-angle graft (10 deg) with 20% proximal outflow. In contrast, other WSS-based hemodynamic parameters did not identify the observed system-dependent shift in IH formation. However, large variations in WSS-vector magnitude and direction, as encapsulated by the WSS-gradient and WSS-angle-gradient parameters, were consistently observed along the IH-prone suture-line region. Of the multiple hemodynamic factors capable of eliciting a hyperplastic response at the cellular level, results of this study indicate the potential significance of platelet-wall interactions coinciding with regions of low WSS in the development of IH.  相似文献   
128.
Mercuric chloride damages cellular DNA by a non-apoptotic mechanism   总被引:6,自引:0,他引:6  
Mercury is a xenobiotic metal that is well known to adversely affect the immune system, however, little is known as to the molecular mechanism. Recently, it has been suggested that mercury may induce immune dysfunction by triggering apoptosis in immune cells. Here, we studied the effects of Hg(2+) (HgCl(2)) on U-937 cells, a human cell line with monocytic characteristics. We found that these cells continued to proliferate when exposed to low doses of mercury between 1 and 5 microM. Using the single cell gel electrophoresis (SCGE) or 'comet' assay, we found that mercury damaged DNA at these levels. Between 1 and 50 microM Hg(2+), comet formation was concentration-dependent with the greatest number of comets formed at 5 microM mercury. However, the appearance of mercury-induced comets was qualitatively different from those of control cells treated with anti-fas antibody, suggesting that although mercury might damage DNA, apoptosis was not involved. This was confirmed by the finding that cells treated with 5 microM mercury were negative for annexin-V binding, an independent assay for apoptosis. These data support the notion that DNA damage in surviving cells is a more sensitive indicator of environmental insult than is apoptosis, and suggests that low-concentrations of ionic mercury may be mutagenic.  相似文献   
129.
Adenosine (ADO) exerts potent anti-inflammatory and immunosuppressive effects. In this paper we address the possibility that these effects are partly mediated by inhibition of the secretion of IL-12, a proinflammatory cytokine and a major inducer of Th1 responses. We demonstrate that 5'-N-ethylcarboxamidoadenosine (NECA), a nonspecific ADO analogue, and 2-p-(2-carbonyl-ethyl)phenylethylamino-5'-N-ethylcarboxamidoadenos ine (CGS-21680), a specific A2a receptor agonist, dose-dependently inhibited, in whole blood ex vivo and monocyte cultures, the production of human IL-12 induced by LPS and Stapholococcus aureus Cowan strain 1. However, the A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine and the A3 receptor agonists N6-Benzyl-NECA and 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-be ta-d -ribofuranuronamide expressed only weak inhibitory effects. On the other hand, NECA and CGS-21680 dose-dependently potentiated the production of IL-10. The differential effect of these drugs on monocyte IL-12 and IL-10 production implies that these effects are mediated by A2a receptor signaling rather than by intracellular toxicity of ADO analogue's metabolites. Moreover, CGS-21680 inhibited IL-12 production independently of endogenous IL-10 induction, because anti-IL-10 Abs failed to prevent its effect. The selective A2a antagonist 8-(3-Chlorostyryl) caffeine prevented the inhibitory effect of CGS-21680 on IL-12 production. The phosphodiesterase inhibitor Ro 20-1724 dose-dependently potentiated the inhibitory effect of CGS-21680 and, furthermore, Rp-cAMPS, a protein kinase A inhibitor, reversed the inhibitory effect of CGS-21680, implicating a cAMP/protein kinase A pathway in its action. Thus, ligand activation of A2a receptors simultaneously inhibits IL-12 and stimulates IL-10 production by human monocytes. Through this mechanism, ADO released in excess during inflammatory and ischemic conditions, or tissue injury, may contribute to selective suppression of Th1 responses and cellular immunity.  相似文献   
130.
Several hundred serially cultured cell suspensions derived from three cultivars of periwinkle (Catharanthus roseus) were established in Gamborg's B5 medium and then transferred to Zenk's alkaloid production medium. Total alkaloid concentration ranged from 0.1 to 1.5% of dry weight. Alkaloids present were of the corynanthe, strychnos and aspidosperma types, with the greatest diversity arising during the third to the fifth week of subculturing. The alkaloid content appeared both specific for, and reproducible in, individual cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号