首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   10篇
  133篇
  2022年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   12篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   11篇
  2009年   3篇
  2008年   9篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1996年   3篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1975年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
71.
The hepatocyte growth factor (HGF)-c-Met signaling axis is involved in the mediation of many biological activities, including angiogenesis, proliferation, cell survival, cell motility, and morphogenesis. Dysregulation of c-Met signaling (e.g., overexpression or increased activation) is associated with the proliferation and metastasis of a wide range of tumor types, including breast, liver, lung, colorectal, gastric, bladder, and prostate, among others. Inhibiting the HGF-c-Met pathway is predicted to lead to anti-tumor effects in many cancers. Elaboration of the SAR around a series of 2,4-diaminopyrimidines led to a number of c-Met inhibitors in which pharmaceutical properties were modulated by substituents appended on the C2-benzazepinone ring. In particular, certain-3-amidobenzazepin-2-one analogs had improved oral bioavailability and were evaluated in PK/PD and efficacy models. Lead compounds demonstrated tumor stasis with partial regressions when evaluated in a GTL-16 tumor xenograft mouse model.  相似文献   
72.
High-throughput pyrosequencing and quantitative PCR (Q-PCR) analysis offer greatly improved accuracy and depth of characterisation of lower respiratory infections. However, such approaches suffer from an inability to distinguish between DNA derived from viable and non-viable bacteria. This discrimination represents an important step in characterising microbial communities, particularly in contexts with poor clearance of material or high antimicrobial stress, as non-viable bacteria and extracellular DNA can contribute significantly to analyses. Pre-treatment of samples with propidium monoazide (PMA) is an effective approach to non-viable cell exclusion (NVCE). However, the impact of NVCE on microbial community characteristics (abundance, diversity, composition and structure) is not known. Here, adult cystic fibrosis (CF) sputum samples were used as a paradigm. The effects of PMA treatment on CF sputum bacterial community characteristics, as analysed by pyrosequencing and enumeration by species-specific (Pseudomonas aeruginosa) and total bacterial Q-PCR, were assessed. At the local community level, abundances of both total bacteria and of P. aeruginosa were significantly lower in PMA-treated sample portions. Meta-analysis indicated no overall significant differences in diversity; however, PMA treatment resulted in a significant alteration in local community membership in all cases. In contrast, at the metacommunity level, PMA treatment resulted in an increase in community evenness, driven by an increase in diversity, predominately representing rare community members. Importantly, PMA treatment facilitated the detection of both recognised and emerging CF pathogens, significantly influencing ‘core'' and ‘satellite'' taxa group membership. Our findings suggest failure to implement NVCE may result in skewed bacterial community analyses.  相似文献   
73.

Background  

The canonical core promoter elements consist of the TATA box, initiator (Inr), downstream core promoter element (DPE), TFIIB recognition element (BRE) and the newly-discovered motif 10 element (MTE). The motifs for these core promoter elements are highly degenerate, which tends to lead to a high false discovery rate when attempting to detect them in promoter sequences.  相似文献   
74.

Introduction  

The aim of this study was to examine seroconversion and the relationship with age and inflammation of autoantibodies in a large group of patients attending an outpatient rheumatology clinic.  相似文献   
75.
Molecular adaptation of a leaf-eating bird: stomach lysozyme of the hoatzin   总被引:5,自引:1,他引:5  
This report describes a lysozyme expressed at high levels in the stomach of the hoatzin, the only known foregut-fermenting bird. Evolutionary comparison places it among the calcium-binding lysozymes rather than among the conventional types. Conventional lysozymes were recruited as digestive enzymes twice in the evolution of mammalian foregut fermenters, and these independently recruited lysozymes share convergent structural changes attributed to selective pressures in the stomach. Biochemical convergence and parallel amino acid replacements are observed in the hoatzin stomach lysozyme even though it has a different genetic origin from the mammalian examples and has undergone more than 300 million years of independent evolution.   相似文献   
76.
Management of drug resistant focal epilepsy would be greatly assisted by a reliable warning system capable of alerting patients prior to seizures to allow the patient to adjust activities or medication. Such a system requires successful identification of a preictal, or seizure-prone state. Identification of preictal states in continuous long- duration intracranial electroencephalographic (iEEG) recordings of dogs with naturally occurring epilepsy was investigated using a support vector machine (SVM) algorithm. The dogs studied were implanted with a 16-channel ambulatory iEEG recording device with average channel reference for a mean (st. dev.) of 380.4 (+87.5) days producing 220.2 (+104.1) days of intracranial EEG recorded at 400 Hz for analysis. The iEEG records had 51.6 (+52.8) seizures identified, of which 35.8 (+30.4) seizures were preceded by more than 4 hours of seizure-free data. Recorded iEEG data were stratified into 11 contiguous, non-overlapping frequency bands and binned into one-minute synchrony features for analysis. Performance of the SVM classifier was assessed using a 5-fold cross validation approach, where preictal training data were taken from 90 minute windows with a 5 minute pre-seizure offset. Analysis of the optimal preictal training time was performed by repeating the cross validation over a range of preictal windows and comparing results. We show that the optimization of feature selection varies for each subject, i.e. algorithms are subject specific, but achieve prediction performance significantly better than a time-matched Poisson random predictor (p<0.05) in 5/5 dogs analyzed.  相似文献   
77.

Background

Maraviroc is an HIV entry inhibitor that alters the conformation of CCR5 and is poorly efficient in patients infected by viruses that use CXCR4 as an entry coreceptor. The goal of this study was to assess the capacity of ultra-deep pyrosequencing (UDPS) and different data analysis approaches to characterize HIV tropism at baseline and predict the therapeutic outcome on maraviroc treatment.

Methods

113 patients with detectable HIV-1 RNA on HAART were treated with maraviroc. The virological response was assessed at months 1, 3 and 6. The sequence of the HIV V3 loop was determined at baseline and prediction of maraviroc response by different software and interpretation algorithms was analyzed.

Results

UDPS followed by analysis with the Pyrotrop software or geno2pheno algorithm provided better prediction of the response to maraviroc than Sanger sequencing. We also found that the H34Y/S substitution in the V3 loop was the strongest individual predictor of maraviroc response, stronger than substitutions at positions 11 or 25 classically used in interpretation algorithms.

Conclusions

UDPS is a powerful tool that can be used with confidence to predict maraviroc response in HIV-1-infected patients. Improvement of the predictive value of interpretation algorithms is possible and our results suggest that adding the H34S/Y substitution would substantially improve the performance of the 11/25/charge rule.  相似文献   
78.
NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons, providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866 and the axon protective protein WldS prevent this rise. These data indicate that the mechanism by which NMNAT and the related WldS protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies.Axon degeneration in disease shares features with the progressive breakdown of the distal segment of severed axons as described by Augustus Waller in 1850 and named Wallerian degeneration.1 The serendipitous discovery of Wallerian degeneration slow (WldS) mice, where transected axons survive 10 times longer than in wild types (WTs),2 suggested that axon degeneration is a regulated process, akin to apoptosis of the cell bodies but distinct in molecular terms.3,4 This process appears conserved in rats, flies, zebrafish and humans.5, 6, 7, 8 WldS blocks axon degeneration in some disease models, indicating a mechanistic similarity.3 Therefore understanding the pathway it influences is an excellent route towards novel therapeutic strategies.WldS is a modified nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) enzyme, whose N-terminal extension partially relocates NMNAT1 from nuclei to axons, conferring gain of function.9,10 In mammals, three NMNAT isoforms, nuclear NMNAT1, cytoplasmic NMNAT2 and mitochondrial NMNAT3, catalyse nicotinamide adenine dinucleotide (NAD) synthesis from nicotinamide mononucleotide (NMN) and adenosine triphosphate (ATP; Figure 1a).11,12 Several reports indicate WldS protects injured axons by maintaining axonal NMNAT activity.13, 14, 15 In WT injured axons, without WldS, NMNAT activity falls when the labile, endogenous axonal isoform, NMNAT2, is no longer transported from cell bodies.16 NMNAT2 is required for axon maintenance16 and for axon growth in vivo and in vitro,17,18 and modulation of its stability by palmitoylation19 or ubiquitin-dependent processes both in mice or when ectopically expressed in Drosophila19, 20, 21 has a corresponding effect on axon survival.Open in a separate windowFigure 1FK866 acts within axons to delay degeneration after injury. (a) The salvage pathway of NAD biosynthesis from nicotinamide (Nam) and nicotinic acid (Na). Only NAD biosynthesis from Nam is sensitive to FK866, which potently inhibits NAMPT while having no effect on nicotinic acid phosphoribosyltransferase (NaPRT).29 The reaction catalysed by bacterial NMN deamidase is also shown. (b) SCG explants were treated with 100 nM FK866 for the indicated times, and then the whole explants (top panel) or the cell bodies (bottom left panel) and neurite fractions (bottom right panel) were separately collected. NAD was determined with an HPLC-based method (see Materials and Methods; n=3, mean and S.D. shown). (c) SCG neurites untreated (top panels) or treated with 100 nM FK866 the day before transection (bottom panels) and imaged after transection at the indicated time points. (d) SCG explants were treated with 100 nM FK866 1 day before or at the indicated times after cutting their neurites. Degeneration index was calculated from three fields in 2–4 independent experiments. The effect of treatment is highly significant when the drug is preincubated or added at 0–4 h after cut (mean ±S.E.M., n=6–12, one-way ANOVA followed by Bonferroni''s post-hoc test, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, compared with untreated)WldS partially colocalizes with mitochondria14,22 and was shown to increase mitochondria motility and Ca2+-buffering capacity.23 Inhibiting mitochondrial permeability transition pore protects degenerating axons.24 However, WldS is protective in axons devoid of mitochondria,8 and targeting a cytosolic variant of NMNAT2 to mitochondria abolished its protective effect,19 suggesting a late mitochondrial involvement in Wallerian degeneration.Despite the importance of NMNAT activity in axon survival and degeneration, the molecular players remain elusive. Although NMNAT activity is required for protection,13 the hypothesis that increased NAD levels are responsible25,26 does not fit some data.27,28While further investigating the role of NAD, we found that blocking nicotinamide phosphoribosyltransferase (NAMPT, the enzyme preceding NMNAT, Figure 1a), was surprisingly axon-protective despite lowering NAD. NAMPT catalyses the synthesis of NMNAT-substrate NMN, the rate-limiting step in the NAD salvage pathway from nicotinamide (Nam) (Figure 1a). Here, we show that NMN accumulates after axon injury, and we provide genetic and pharmacological evidence supporting a role for this NMN increase in axon degeneration when NMNAT2 is depleted. We reveal an unexpected new direction for research into the degenerative mechanism, a novel class of protective proteins and new players in an axon-degeneration pathway sensitive to drugs under development for cancer.  相似文献   
79.
To decarbonize the European Union, protein consumption must transition to diets low in meat and dairy which will drastically change the material and energy flows in current meat and dairy supply chains. To understand the impacts on current flows, a baseline is required. Although recent studies have improved the scope of reported greenhouse gas (GHG) emissions, no quantitative overview exists including intermediate and final product flows. To address this knowledge gap, we structured the meat and dairy supply chains into a connected set of transformation nodes and distribution nodes. The former are processes transforming inputs into outputs, whereas the latter distribute the outputs to other processes using them as inputs. Currently, livestock play a central role in agriculture and other industries through the consumption of 271 Mt fodder crops, 108 Mt grain, 85 Mt grazed biomass, 49 Mt oil meal, and 16 Mt feed by‐products. This feed is transformed into 64 Mt dairy and 35 Mt meat which ensures that the EU28 is a net exporter of meat and dairy while providing 25 Mt of by‐products. This production also leads to 435 Mt CO2‐eq. with the main contribution from beef cattle (35%), dairy cattle (32%), and swine (20%). Thus, the lower GHG intensities of dairy products compared to meat do not imply a low contribution to the total emissions. By mapping the material, energy, and GHG emission flows, we have created a baseline suitable for identifying potential supply chain changes and their related GHG increase or decrease resulting from the protein transition.  相似文献   
80.
Chromogranin A (CGA) is a major secretory protein present in the soluble matrix of chromaffin granules of neuroendocrine cells and tumours, such as phaeochromocytomas. CGA has several functions, some of which may be involved in the distinct phenotypic differences of phaeochromocytomas in patients with von Hippel-Lindau (VHL) syndrome compared to multiple endocrine neoplasia type 2 (MEN 2). In this study, we therefore compared tumour and plasma levels of CGA in patients with phaeochromocytoma associated with the two syndromes. We show that phaeochromocytomas from MEN 2 patients express substantially more CGA than tumours from VHL patients at both the mRNA (3-fold greater) and protein (20-fold) level. We further show that relative to increases in plasma catecholamines, patients with phaeochromocytomas associated with MEN 2 have higher plasma concentrations of CGA than those with tumours in VHL syndrome. These data supplement other observations that phaeochromocytomas in VHL compared to MEN 2 patients express lower amounts of catecholamines and other chromaffin granule cargo, such as chromogranin B and neuropeptide Y. Possibly the differences in tumour CGA expression may contribute to differences in secretory vesicle formation and secretion in the two types of tumours. Alternatively the differences in expression in CGA and other secretory constituents may reflect downregulation of the entire regulated secretory pathway in VHL compared to MEN 2 tumours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号