首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   59篇
  396篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   8篇
  2014年   14篇
  2013年   17篇
  2012年   30篇
  2011年   19篇
  2010年   12篇
  2009年   9篇
  2008年   17篇
  2007年   20篇
  2006年   21篇
  2005年   24篇
  2004年   17篇
  2003年   14篇
  2002年   15篇
  2001年   6篇
  2000年   6篇
  1999年   13篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1994年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1964年   3篇
  1963年   3篇
排序方式: 共有396条查询结果,搜索用时 0 毫秒
91.
Argemone fruticosa Thurber ex Gray was analyzed and found to contain hunnemanine as the major alkaloid along with allocryptopine. A. echinata G. B. Ownb. was found to contain cryptopine and berberine as major alkaloids. These analyses indicate that these two species belong among the more specialized species of the genus.  相似文献   
92.
93.
Histone acetyltransferase complexes: one size doesn't fit all   总被引:13,自引:0,他引:13  
Over the past 10 years, the study of histone acetyltransferases (HATs) has advanced significantly, and a number of HATs have been isolated from various organisms. It emerged that HATs are highly diverse and generally contain multiple subunits. The functions of the catalytic subunit depend largely on the context of the other subunits in the complex. We are just beginning to understand the specialized roles of HAT complexes in chromosome decondensation, DNA-damage repair and the modification of non-histone substrates, as well as their role in the broader epigenetic landscape, including the role of protein domains within HAT complexes and the dynamic interplay between HAT complexes and existing histone modifications.  相似文献   
94.
95.
The BamA protein of Escherichia coli plays a central role in the assembly of β-barrel outer membrane proteins (OMPs). The C-terminal domain of BamA folds into an integral outer membrane β-barrel, and the N terminus forms a periplasmic polypeptide transport-associated (POTRA) domain for OMP reception and assembly. We show here that BamA misfolding, caused by the deletion of the R44 residue from the α2 helix of the POTRA 1 domain (ΔR44), can be overcome by the insertion of alanine 2 residues upstream or downstream from the ΔR44 site. This highlights the importance of the side chain orientation of the α2 helix residues for normal POTRA 1 activity. The ΔR44-mediated POTRA folding defect and its correction by the insertion of alanine were further demonstrated by using a construct expressing just the soluble POTRA domain. Besides misfolding, the expression of BamA(ΔR44) from a low-copy-number plasmid confers a severe drug hypersensitivity phenotype. A spontaneous drug-resistant revertant of BamA(ΔR44) was found to carry an A18S substitution in the α1 helix of POTRA 1. In the BamA(ΔR44, A18S) background, OMP biogenesis improved dramatically, and this correlated with improved BamA folding, BamA-SurA interactions, and LptD (lipopolysaccharide transporter) biogenesis. The presence of the A18S substitution in the wild-type BamA protein did not affect the activity of BamA. The discovery of the A18S substitution in the α1 helix of the POTRA 1 domain as a suppressor of the folding defect caused by ΔR44 underscores the importance of the helix 1 and 2 regions in BamA folding.  相似文献   
96.
Gcn5 is a conserved histone acetyltransferase (HAT) found in a number of multisubunit complexes from Saccharomyces cerevisiae, mammals, and flies. We previously identified Drosophila melanogaster homologues of the yeast proteins Ada2, Ada3, Spt3, and Tra1 and showed that they associate with dGcn5 to form at least two distinct HAT complexes. There are two different Ada2 homologues in Drosophila named dAda2A and dAda2B. dAda2B functions within the Drosophila version of the SAGA complex (dSAGA). To gain insight into dAda2A function, we sought to identify novel components of the complex containing this protein, ATAC (Ada two A containing) complex. Affinity purification and mass spectrometry revealed that, in addition to dAda3 and dGcn5, host cell factor (dHCF) and a novel SANT domain protein, named Atac1 (ATAC component 1), copurify with this complex. Coimmunoprecipitation experiments confirmed that these proteins associate with dGcn5 and dAda2A, but not with dSAGA-specific components such as dAda2B and dSpt3. Biochemical fractionation revealed that ATAC has an apparent molecular mass of 700 kDa and contains dAda2A, dGcn5, dAda3, dHCF, and Atac1 as stable subunits. Thus, ATAC represents a novel histone acetyltransferase complex that is distinct from previously purified Gcn5/Pcaf-containing complexes from yeast and mammalian cells.  相似文献   
97.
Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) is a matricellular protein that functions in wound healing. Fibrinogen is a plasma protein involved in many aspects of wound healing, such as inflammation, fibrosis and thrombosis. In this study, the binding of SPARC to both native and plasmin-cleaved fibrinogen under physiological conditions was examined by the use of a surface plasmon resonance (SPR) biosensor. We show that SPARC binds to plasmin-cleaved fibrinogen, but not to native fibrinogen. SPARC binds to both fibrinogen fragments D and E fg D and fg E with similar dissociation constants (8.67 x 10(-8) M for Fg D and 1.61 x 10(-7) M for Fg E). Results from endothelial cell proliferation assays show that the binding of SPARC to Fg E suppressed the inhibition of proliferation by SPARC, whereas the binding of SPARC to Fg D did not influence the activity of SPARC on the cell cycle. The interaction of SPARC with fibrinogen fragments D and E, which are produced as a result of proteolytic activation of fibrinolysis, reveals potential storage sites in provisional extracellular matrix for SPARC during the wound healing process and indicates a regulatory role of SPARC in fibrinolysis and angiogenesis.  相似文献   
98.
99.
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.  相似文献   
100.
Histone deacetylase inhibitors: anticancer compounds   总被引:1,自引:0,他引:1  
The reversible acetylation of proteins is mediated by histone acetyltransferases which acetylate proteins and histone deacetylases that remove the acetyl groups. High levels of histone acetylation are correlated with active genes, while hypoacetylation of histones corresponds with gene repression. Importantly, acetylation also occurs on non-histone proteins and this can affect the activity and stability of these proteins. Aberrant epigenetic changes are a common hallmark of tumors and imbalances in the activities of deacetylases have been associated with cancers. Accordingly, inhibitors to the histone deacetylases are in clinical trials for the treatment of several cancer types. These drugs mediate a number of molecular changes and in turn can induce cell cycle arrest, apoptosis or differentiation of cancer cells while displaying limited toxicity in normal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号