首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   19篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   4篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   9篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
排序方式: 共有170条查询结果,搜索用时 438 毫秒
1.
Protein kinase C (PKC) regulates numerous T cell functions and is present in abundance in normal human T cells and certain T cell lines. Although crude Triton X-100 soluble material obtained from T cell pellets contains minimal PKC activity, DEAE chromatography revealed that 12 to 37% of cellular PKC was membrane associated, probably due to removal of an inhibitor through column chromatography. As in other tissues, PKC from lymphoid tissue was phospholipid and Ca2+ dependent and diolein reduced the Ca2+ requirements for enzyme activity. Hydroxylapatite chromatography revealed that T cells possess two major peaks of PKC activity. Although, the enzyme in these peaks had similar m.w. and identical iso-electric mobility, the proteins differed with respect to their autophosphorylation sites and immunoreactivity toward an isoform specific antibody. Furthermore, differences in their activities in the presence of phospholipid, diolein, and limiting amounts of Ca2+ imply that these isoforms may be differentially activated. We discuss optimal conditions for activation of PKC and its isoforms for study of T lymphocyte cellular function.  相似文献   
2.
Lymphocytes were found to be rich in phospholipid/Ca2+-dependent (C-kinase) activity. Addition of polymyxin B (PMB) to in vitro assays of endogenous and exogenous phosphorylation resulted in profound inhibition of C-kinase activity. The phorbol ester 12-o-tetradecanoyl phorbol-13-acetate (TPA) directly activated C-kinase, leading to increased phosphorylation of the same substrates. TPA also stimulated proliferation of B cells as assessed by 3H-thymidine uptake, and PMB strongly inhibited this effect. This coordinate inhibition of TPA-induced phosphorylation and mitogenesis indicates that PMB is a potentially useful inhibitor of C-kinase activity, and that this enzyme may play an important role in mediating B cell responses.  相似文献   
3.
Treatment of hepatocytes with islet activating protein (pertussis toxin) from Bordetella pertussis blocked the ability of insulin to inhibit adenylate cyclase activity both in broken plasma membranes and in intact hepatocytes. Such treatment of intact hepatocytes with pertussis toxin did not prevent insulin from activating the peripheral plasma membrane cyclic AMP phosphodiesterase although it did inhibit the ability of insulin to activate the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of glucagon pretreatment of hepatocytes to block insulin's activation of the plasma membrane cyclic AMP phosphodiesterase was abolished in pertussis toxin-treated hepatocytes. It is suggested that the ability of insulin to manipulate cyclic AMP concentrations by inhibiting adenylate cyclase and activating the plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases involves interactions with the guanine nucleotide regulatory protein system occurring in liver plasma membranes.  相似文献   
4.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   
5.
Heat shock treatment of rat embryo fibroblasts resulted in a 60% increase in cytosolic protein kinase C activity, in contrast to phorbol ester-induced translocation to the membrane. During reversal of the cells back to the normal temperature a decrease in cytosolic PKC activity was observed and paralleled by an increase in protamine kinase activity. Cell lysates prepared from heat shock-treated cells show a marked calcium/phospholipid-dependent phosphorylation of several endogenous PKC substrate proteins, while the 28-kDa stress protein was shown to be a PKC substrate. These cells express the TYPE III-alpha isoform of PKC and, thus, the alterations induced within cells exposed to hyperthermic treatment may reflect a functional significance with regard to the regulation of this specific isoform.  相似文献   
6.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   
7.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
8.
9.
West African populations of Onchocerca volvulus endemic to the rain forest and savanna bioclimes of West Africa differ in their ability to induce ocular disease in infected individuals. In recent years, both clinical- and animal-model-based studies have implicated particular parasite antigens in the development of ocular onchocerciasis. To test the hypothesis that the difference in pathogenic potential of blinding and nonblinding parasites might be reflected in qualitative differences in antigens that have been implicated in the development of ocular onchocerciasis, we compared the sequences of two parasite antigens implicated in the development of ocular disease in blinding- and nonblinding-strain parasites. The results demonstrated a high level of homogeneity between the parasite strains in these genes. The study was extended to include additional nuclear genes encoding antigens that are commonly recognized by individuals infected with O. volvulus and to the mitochondrial genome of the parasite. The results demonstrate a high degree of homogeneity in both the nuclear and the mitochondrial genomes among O. volvulus isolates collected from several different sites in Africa and in the Americas. This high degree of genetic homogeneity may reflect the passage of the parasite through a recent genetic bottleneck.  相似文献   
10.
The Class II histone deacetylase, HDAC6, has been shown to be involved in cell motility, aggresome formation and mitochondria transport. HDAC6 deacetylase activity regulates α-tubulin acetylation levels and thus plays a critical role in these processes. In turn, HDAC6 activity can be regulated by interaction with various proteins including multiple kinases. Kinase mediated phosphorylation of HDAC6 can lead to either increased or reduced activity. Our previous research has shown that sequestosome1/p62 (SQSTM1/p62) interacts with HDAC6 and regulates its activity. As SQSTM1/p62 is a scaffolding protein known to interact directly with the zeta isoform of Protein Kinase C (PKCζ), we sought to examine if HDAC6 could be a substrate for PKCζ phosphorylation and if so, how its activity might be regulated. Our data demonstrate that HDAC6 is not only present in a protein complex with PKCζ but can also be phosphorylated by PKCζ. We also show that specific phosphorylation of HDAC6 by PKCζ increases HDAC6 deacetylase activity resulting in reduced acetylated tubulin levels. Our findings provide novel insight into the molecular mechanism by which HDAC6, PKCζ and SQSTM1/p62 function together in protein aggregate clearance. These results also highlight a new research direction which may prove fruitful for understanding the underlying cause of several neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号