首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2314篇
  免费   260篇
  2021年   20篇
  2017年   24篇
  2016年   27篇
  2015年   52篇
  2014年   59篇
  2013年   80篇
  2012年   105篇
  2011年   93篇
  2010年   58篇
  2009年   64篇
  2008年   79篇
  2007年   100篇
  2006年   100篇
  2005年   86篇
  2004年   81篇
  2003年   84篇
  2002年   82篇
  2001年   57篇
  2000年   70篇
  1999年   53篇
  1998年   27篇
  1997年   34篇
  1996年   23篇
  1994年   21篇
  1993年   33篇
  1992年   39篇
  1991年   44篇
  1990年   38篇
  1989年   54篇
  1988年   44篇
  1987年   46篇
  1986年   42篇
  1985年   40篇
  1984年   38篇
  1983年   32篇
  1982年   26篇
  1981年   31篇
  1979年   44篇
  1978年   22篇
  1977年   30篇
  1976年   30篇
  1975年   41篇
  1974年   34篇
  1973年   45篇
  1972年   35篇
  1971年   29篇
  1970年   36篇
  1969年   26篇
  1968年   25篇
  1967年   26篇
排序方式: 共有2574条查询结果,搜索用时 250 毫秒
971.
Rats that develop diet-induced obesity (DIO) on a 31% fat [high-energy (HE)] diet have defective sensing and responding to altered glucose levels compared with diet-resistant (DR) rats. Thus we postulated that they would also have defective counterregulatory responses (CRR) to insulin-induced hypoglycemia (IIH). Chow-fed selectively bred DIO and DR rats underwent three sequential 60-min bouts of IIH separated by 48 h. Glucose levels fell comparably, but DIO rats had 22-29% lower plasma epinephrine (Epi) levels during the first two bouts than DR rats. By the third trial, despite comparable Epi levels, DIO rats had lower 30-min glucose levels and rebounded less than DR rats 85 min after intravenous glucose. Although DIO rats gained more carcass and fat weight after 4 wk on an HE diet than DR rats, they were unaffected by prior IIH. Compared with controls, DR rats with prior IIH and HE diet had higher arcuate nucleus neuropeptide Y (50%) and proopiomelanocortin (POMC; 37%) mRNA and an inverse correlation (r = 0.85; P = 0.004) between POMC expression and body weight gain on the HE diet. These data suggest that DIO rats have a preexisting defect in their CRR to IIH but that IIH does not affect the expression of their hypothalamic neuropeptides or weight gain as it does in DR rats.  相似文献   
972.
The effects of running wheel exercise and caloric restriction on the regulation of body weight, adiposity, and hypothalamic neuropeptide expression were compared in diet-induced obese male rats over 6 wk. Compared with sedentary controls, exercising rats had reduced body weight gain (24%), visceral (4 fat pads; 36%) and carcass (leptin; 35%) adiposity but not insulin levels. Hypothalamic arcuate nucleus (ARC) proopiomelanocortin (POMC) mRNA expression was 25% lower, but ARC neuropeptide Y (NPY), agouti- related peptide, dorsomedial nucleus (DMN) NPY, and paraventricular nucleus (PVN) corticotropin- releasing hormone (CRH) expression was comparable to controls. Sedentary rats calorically restricted to 85% of control body weight reduced their visceral adiposity (24%), leptin (64%), and insulin (21%) levels. ARC NPY (23%) and DMN NPY (60%) were increased, while ARC POMC (40%) and PVN CRH (14%) were decreased. Calorically restricted exercising rats an half as much as ad libitum-fed exercising rats and had less visceral obesity than comparably restricted sedentary rats. When sedentary restricted rats were refed after 4 wk, they increased intake and regained the weight gain and adiposity of sedentary controls. While refed exercising rats and sedentary rats ate comparable amounts, refed exercising rats regained weight and adiposity only to the level of ad libitum-fed exercising rats. Thus exercise lowers the defended level of weight gain and adiposity without a compensatory increase in intake and with a very different profile of hypothalamic neuropeptide expression from calorically restricted rats. This may be due to exercise-related factors other than plasma insulin and leptin.  相似文献   
973.
974.
Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.  相似文献   
975.
Levin SM 《Journal of biomechanics》2005,38(8):1733-4; author reply 1734-6
  相似文献   
976.
A potent, selective series of MMP-13 inhibitors has been derived from a weak (3.2 microM) inhibitor that did not bear a zinc chelator. Structure-based drug design strategies were employed to append a Zn-chelating group to one end of the molecule and functionality to enhance selectivity to the other. A compound from this series demonstrated rat oral bioavailability and efficacy in a bovine articular cartilage explant model.  相似文献   
977.
Rats prone to develop diet-induced obesity (DIO) have reduced central sensitivity to many metabolic and hormonal signals involved in energy homeostasis. High-fat diets produce similar defects in diet-resistant (DR) rats. To test the hypothesis that genotype and diet exposure would similarly affect central insulin signaling, we assessed the anorectic effects of 8 mU third ventricular (iv3t) insulin before and after 4 wk intake of a 31% fat, high-energy (HE) diet intake in outbred (OutB) rats. Rats were retrospectively designated as DR or DIO by their low or high weight gains on HE diet. Before the HE diet, iv3t insulin reduced 4-h and 24-h chow intake by 53% and 69% in DR rats but by only 17% and 27% in DIO rats, respectively. Also, the anorectic response to iv3t insulin in OutB rats was inversely correlated (r = 0.72, P = 0.002) with subsequent 4-wk weight gain on the HE diet. Similarly, in selectively bred (SB) chow-fed DR rats, 8 mU iv3t insulin reduced 4-h and 24-h intake by 21% and 22%, respectively, but had no significant effect in SB DIO rats. Four-week HE diet intake reduced 4-h and 24-h insulin-induced anorexia by 45% in OutB DR rats and completely abolished it in SB DR rats. Reduced insulin responsiveness was unassociated with differences in arcuate nucleus insulin receptor mRNA expression between DIO and DR rats or between rats fed chow or HE diet. These data suggest that DIO rats have a preexisting reduction in central insulin signaling, which might contribute to their becoming obese on the HE diet. However, since the HE diet reduced central insulin sensitivity in DR rats but did not make them obese, it is likely that other brain areas are involved in insulin's anorectic action or that other pathways contribute to the development and maintenance of obesity.  相似文献   
978.
Can nonhuman animals attend to visual stimuli as whole, coherent objects? We investigated this question by adapting for use with pigeons a task in which human participants must report whether two visual attributes belong to the same object (one-object trial) or to different objects (two-object trial). We trained pigeons to discriminate a pair of differently colored shapes that had two targets either on a single object or on two different objects. Each target equally often appeared on the one-object and two-object stimuli; therefore, a specific target location could not serve as a discriminative cue. The pigeons learned to report whether the two target dots were located on a single object or on two different objects; follow-up tests demonstrated that this ability was not entirely based on memorization of the dot patterns and locations. Additional tests disclosed predominate stimulus control by the color, but not by the shape of the two objects. These findings suggest that human psychophysical methods are readily applicable to the study of object discrimination by nonhuman animals.  相似文献   
979.
Glycosylphosphatidylinositols (GPIs) are attached to the C termini of some glycosylated secretory proteins, serving as membrane anchors for many of those on the cell surface. Biosynthesis of GPIs is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol. This reaction is carried out at the endoplasmic reticulum (ER) by an enzyme complex called GPI-N-acetylglucosaminyltransferase (GPI-GlcNAc transferase). The human enzyme has six known subunits, at least four of which, GPI1, PIG-A, PIG-C, and PIG-H, have functional homologs in the budding yeast Saccharomyces cerevisiae. The uncharacterized yeast gene YDR437w encodes a protein with some sequence similarity to human PIG-P, a fifth subunit of the GPI-GlcNAc transferase. Here we show that Ydr437w is a small but essential subunit of the yeast GPI-GlcNAc transferase, and we designate its gene GPI19. Similar to other mutants in the yeast enzyme, temperature-sensitive gpi19 mutants display cell wall defects and hyperactive Ras phenotypes. The Gpi19 protein associates with the yeast GPI-GlcNAc transferase in vivo, as judged by coimmuneprecipitation with the Gpi2 subunit. Moreover, conditional gpi19 mutants are defective for GPI-GlcNAc transferase activity in vitro. Finally, we present evidence for the topology of Gpi19 within the ER membrane.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号