首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   44篇
  215篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2017年   1篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   10篇
  2005年   9篇
  2004年   9篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   3篇
  1967年   1篇
  1935年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
111.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   
112.
A highly conserved ribosomal stem-loop immediately upstream of the Tetrahymena splice junction can inhibit both forward and reverse self-splicing by competing with base pairing between the 5' exon and the guide sequence of the intervening sequence. Formation of this unproductive hairpin is preferred in precursor RNAs with short exons and results in a lower rate of splicing. Inhibition of self-splicing is not observed in longer precursors, suggesting that additional interactions in the extended exons can influence the equilibrium between the productive and unproductive hairpins at the 5' splice site. An alternative pairing upstream of the 5' splice site has been identified and is proposed to stabilize the active conformer of the pre-rRNA. Nucleotide changes that alter the ability to form this additional helix were made, and the self-splicing rates were compared. Precursors in which the proposed stem is stabilized splice more rapidly than the wild type, whereas RNAs that contain a base mismatch splice more slowly. The ability of DNA oligomers to bind the RNA, as detected by RNase H digestion, correlates with the predicted secondary structure of the RNA. We also show that a 236-nucleotide RNA containing the natural splice junction is a substrate for intervening sequence integration. As in the forward reaction, reverse splicing is enhanced in ligated exon substrates in which the alternative rRNA pairing is more stable.  相似文献   
113.
114.
115.
116.
A characteristic feature of the sperm P1 protamines of eutherian mammals is the constant presence of six to nine cysteine residues per molecule. During spermiogenesis these residues become oxidized to form a three-dimensional network of disulfide bridges between, and within, protamine molecules in the sperm chromatin. This covalent cross linking strongly stabilizes eutherian sperm nuclei. In contrast, protamines sequenced from teleost fish, birds, monotremes, and marsupials all lack cysteine residues and their sperm nuclei, without the stabilizing cross links, are easily decondensed in vitro. We have now found that one genus of tiny, shrewlike dasyurid marsupials, the Planigales, possess P1 protamines containing five to six cysteine residues. These residues appear to have evolved since the divergence of Planigales from other members of the family Dasyuridae, such as the marsupial mouse, Sminthopsis crassicaudata. We believe this constitutes a case of convergent evolution in a subfamily of dasyurid marsupials toward the cysteine-rich eutherian form of sperm protamine P1.   相似文献   
117.
Group I introns in rRNA genes are clustered in highly conserved regions that include tRNA and mRNA binding sites. This pattern is consistent with insertion of group I introns by direct interaction with exposed regions of rRNA. Integration of the Tetrahymena group I intron (or intervening sequence, IVS) into large subunit rRNA via reverse splicing was investigated using E. coli 23S rRNA as a model substrate. The results show that sequences homologous to the splice junction in Tetrahymena are the preferred site of integration, but that many other sequences in the 23S rRNA provide secondary targets. Like the original splice junction, many new reaction sites are in regions of stable secondary structure. Reaction at the natural splice junction is observed in 50S subunits and to a lesser extent in 70S ribosomes. These results support the feasibility of intron transposition to new sites in rRNA genes via reverse splicing.  相似文献   
118.
Witchweed [ Striga asiatica (L.) Kuntze], an economically important parasitic weed on several poaceous crops, is difficult to control. In nature, germination and subsequent morphogenesis of Striga are cued to specific host-derived chemical signals. Seeds (approximately 2.4 mg) treated with thidiazuron (TDZ) or the auxins 2,4-dichlorophenoxy-acetic acid (2,4-D), 1-naphthalene acetic acid (NAA), or 2-(4-chloro- o -tolyloxy) propionic acid (MCPP) produced little ethylene (66-138 nl l−1). Combinations of TDZ with the auxins increased ethylene production by 4- to 18-fold. Ethylene production was strongly inhibited (86–92%) by aminoethoxyvinylglycine (AVG), inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase. Ethylene evolved from seeds treated with TDZ in combination with 2,4-D increased after a lag period and was promoted by a pretreatment in 2,4-D. TDZ or any of the auxins, at the rates tested, effected negligible to low levels of germination (0 to 16%), whereas mixtures of TDZ with the above auxins stimulated 38 to 84% germination. Test solutions containing TDZ and indole-3-acetic acid (IAA) were, however, less effective. TDZ/auxin-induced germination was inhibited by AVG and the ethylene action inhibitor silver thiosulfate (STS). The inhibitory effect of the former was reversed by treatment with ACC. In vitro studies revealed negligible germination (< 1%) on control medium. Seeds germinating on media containing TDZ alone developed into seedlings with distinct shoots and rudimentary roots. Seeds germinating on media containing 2,4-D, irrespective of TDZ concentration, were induced to form calli. The results are consistent with a model in which both germination and subsequent morphogenesis in Striga are associated with exogenous and endogenous phytohormones.  相似文献   
119.
We used a high flux synchrotron X-ray beam to map the structure of 16S rRNA and RNase P in viable bacteria in situ. A 300 ms exposure to the X-ray beam was sufficient for optimal cleavage of the phosphodiester backbone. The in vivo footprints of the 16S rRNA in frozen cells were similar to those obtained in vitro and were consistent with the predicted accessibility of the RNA backbone to hydroxyl radical. Protection or enhanced cleavage of certain nucleotides in vivo can be explained by interactions with tRNA and perturbation of the subunit interface. Thus, short exposures to a synchrotron X-ray beam can footprint the tertiary structure and protein contacts of RNA–protein complexes with nucleotide resolution in living cells.  相似文献   
120.
Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg2+ concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg2+ threshold at which activity was detected and increased total RNA cleavage at high Mg2+ concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号