首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   44篇
  215篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2017年   1篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   10篇
  2005年   9篇
  2004年   9篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   3篇
  1967年   1篇
  1935年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
101.
A highly conserved ribosomal stem-loop immediately upstream of the Tetrahymena splice junction can inhibit both forward and reverse self-splicing by competing with base pairing between the 5' exon and the guide sequence of the intervening sequence. Formation of this unproductive hairpin is preferred in precursor RNAs with short exons and results in a lower rate of splicing. Inhibition of self-splicing is not observed in longer precursors, suggesting that additional interactions in the extended exons can influence the equilibrium between the productive and unproductive hairpins at the 5' splice site. An alternative pairing upstream of the 5' splice site has been identified and is proposed to stabilize the active conformer of the pre-rRNA. Nucleotide changes that alter the ability to form this additional helix were made, and the self-splicing rates were compared. Precursors in which the proposed stem is stabilized splice more rapidly than the wild type, whereas RNAs that contain a base mismatch splice more slowly. The ability of DNA oligomers to bind the RNA, as detected by RNase H digestion, correlates with the predicted secondary structure of the RNA. We also show that a 236-nucleotide RNA containing the natural splice junction is a substrate for intervening sequence integration. As in the forward reaction, reverse splicing is enhanced in ligated exon substrates in which the alternative rRNA pairing is more stable.  相似文献   
102.
103.
104.

Introduction  

Back pain, a significant source of morbidity in our society, is related to the degenerative changes of the intervertebral disc. At present, the treatment of disc disease consists of therapies that are aimed at symptomatic relief. This shortcoming stems in large part from our lack of understanding of the biochemical and molecular events that drive the disease process. The goal of this study is to develop a model of early disc degeneration using an organ culture. This approach is based on our previous studies that indicate that organ culture closely models molecular events that occur in vivo in an ex vivo setting.  相似文献   
105.
106.
107.
Preferential location of bulged guanosine internal to a G.C tract by 1H NMR   总被引:3,自引:0,他引:3  
A series of double-helical oligodeoxyribonucleotides of sequence corresponding to a frame-shift mutational hot spot in the lambda CI gene, 5'-dGATGGGGCAG, are compared by proton magnetic resonance spectroscopy at 500 MHz of the exchangeable protons. Duplexes containing an extra guanine in a run of two, three, and four G.C base pairs are compared to regular helices of the same sequence and to another sequence containing an isolated bulged G, 5'-dGATGGGCAG.dCTGCGCCATC. The imino proton resonances are assigned by one-dimensional nuclear Overhauser effect spectroscopy. Resonances assigned to the G tract in bulge-containing duplexes are shifted anomalously upfield and are very broad. Imino proton lifetimes are determined by T1 inversion-recovery experiments. The exchange rates of G-tract imino protons in bulged duplexes are rapid compared to those in regular helices and are discussed in terms of the apparent rate of solvent exchange for the isolated G bulge. Delocalization of a bulged guanosine in homopolymeric sequences can explain the observed changes in chemical shift and relaxation times across the entire G.C run, and the chemical shifts can be fit by a simple model of fast exchange between base-paired and unpaired states for the imino protons. This allows us to calculate the relative occupancies of each bulge site. In these sequences, we find the extra base prefers positions internal to the G tract over those at the edge.  相似文献   
108.
109.
Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.  相似文献   
110.
Condensed counterions contribute to the stability of compact structures in RNA, largely by reducing electrostatic repulsion among phosphate groups. Varieties of cations induce a collapsed state in the Tetrahymena ribozyme that is readily transformed to the catalytically active structure in the presence of Mg2+. Native gel electrophoresis was used to compare the effects of the valence and size of the counterion on the kinetics of this transition. The rate of folding was found to decrease with the charge of the counterion. Transitions in monovalent ions occur 20- to 40-fold faster than transitions induced by multivalent metal ions. These results suggest that multivalent cations yield stable compact structures, which are slower to reorganize to the native conformation than those induced by monovalent ions. The folding kinetics are 12-fold faster in the presence of spermidine3+ than [Co(NH3)6]3+, consistent with less effective stabilization of long-range RNA interactions by polyamines. Under most conditions, the observed folding rate decreases with increasing counterion concentration. In saturating amounts of counterion, folding is accelerated by addition of urea. These observations indicate that reorganization of compact intermediates involves partial unfolding of the RNA. We find that folding of the ribozyme is most efficient in a mixture of monovalent salt and Mg2+. This is attributed to competition among counterions for binding to the RNA. The counterion dependence of the folding kinetics is discussed in terms of the ability of condensed ions to stabilize compact structures in RNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号