首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1958篇
  免费   191篇
  2022年   18篇
  2021年   25篇
  2018年   15篇
  2017年   16篇
  2016年   29篇
  2015年   35篇
  2014年   46篇
  2013年   62篇
  2012年   81篇
  2011年   76篇
  2010年   51篇
  2009年   39篇
  2008年   62篇
  2007年   70篇
  2006年   68篇
  2005年   64篇
  2004年   54篇
  2003年   60篇
  2002年   45篇
  2001年   57篇
  2000年   56篇
  1999年   49篇
  1998年   28篇
  1997年   22篇
  1996年   15篇
  1995年   11篇
  1994年   12篇
  1993年   22篇
  1992年   42篇
  1991年   30篇
  1990年   42篇
  1989年   40篇
  1988年   24篇
  1987年   50篇
  1986年   55篇
  1985年   51篇
  1984年   54篇
  1983年   65篇
  1982年   49篇
  1981年   53篇
  1980年   55篇
  1979年   37篇
  1978年   29篇
  1977年   26篇
  1976年   23篇
  1975年   21篇
  1974年   26篇
  1973年   27篇
  1972年   13篇
  1970年   19篇
排序方式: 共有2149条查询结果,搜索用时 31 毫秒
991.
The control of food intake and body weight by the brain relies upon the detection and integration of signals reflecting energy stores and fluxes, and their interaction with many different inputs related to food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and other situational factors. This review focuses upon the role of hormones secreted by the endocrine pancreas: hormones, which individually and collectively influence food intake, with an emphasis upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal that reflects both circulating energy in the form of glucose and stored energy in the form of visceral adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis. Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the endocrine pancreas interact with receptors at many points along the gut-brain axis, from the liver to the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are conveyed both neurally and humorally. Finally, their actions include gastrointestinal and metabolic as well as behavioural effects.  相似文献   
992.
BACKGROUND: Myelinated axons are essential for rapid conduction of action potentials in the vertebrate nervous system. Of particular importance are the nodes of Ranvier, sites of voltage-gated sodium channel clustering that allow action potentials to be propagated along myelinated axons by saltatory conduction. Despite their critical role in the function of myelinated axons, little is known about the mechanisms that organize the nodes of Ranvier. RESULTS: Starting with a forward genetic screen in zebrafish, we have identified an essential requirement for nsf (N-ethylmaleimide sensitive factor) in the organization of myelinated axons. Previous work has shown that NSF is essential for membrane fusion in eukaryotes and has a critical role in vesicle fusion at chemical synapses. Zebrafish nsf mutants are paralyzed and have impaired response to light, reflecting disrupted nsf function in synaptic transmission and neural activity. In addition, nsf mutants exhibit defects in Myelin basic protein expression and in localization of sodium channel proteins at nodes of Ranvier. Analysis of chimeric larvae indicates that nsf functions autonomously in neurons, such that sodium channel clusters are evident in wild-type neurons transplanted into the nsf mutant hosts. Through pharmacological analyses, we show that neural activity and function of chemical synapses are not required for sodium channel clustering and myelination in the larval nervous system. CONCLUSIONS: Zebrafish nsf mutants provide a novel vertebrate system to investigate Nsf function in vivo. Our results reveal a previously unknown role for nsf, independent of its function in synaptic vesicle fusion, in the formation of the nodes of Ranvier in the vertebrate nervous system.  相似文献   
993.
We conducted a 10-centimorgan linkage autosomal genome scan in a set of 19 extended American pedigrees (219 subjects) ascertained through probands with panic disorder. Several anxiety disorders--including social phobia, agoraphobia, and simple phobia--in addition to panic disorder segregate in these families. In previous studies of this sample, linkage analyses were based separately on each of the individual categorical affection diagnoses. Given the substantial comorbidity between anxiety disorders and their probable shared genetic liability, it is clear that this method discards a considerable amount of information. In this article, we propose a new approach that considers panic disorder, simple phobia, social phobia, and agoraphobia as expressions of the same multivariate, putatively genetically influenced trait. We applied the most powerful multipoint Haseman-Elston method, using the grade of membership score generated from a fuzzy clustering of these phenotypes as the dependent variable in Haseman-Elston regression. One region on chromosome 4q31-q34, at marker D4S413 (with multipoint and single-point nominal P values < .00001), showed strong evidence of linkage (genomewide significance at P<.05). The same region is known to be the site of a neuropeptide Y receptor gene, NPY1R (4q31-q32), that was recently connected to anxiolytic-like effects in rats. Several other regions on four chromosomes (4q21.21-22.3, 5q14.2-14.3, 8p23.1, and 14q22.3-23.3) met criteria for suggestive linkage (multipoint nominal P values < .01). Family-by-family analysis did not show any strong evidence of heterogeneity. Our findings support the notion that the major anxiety disorders, including phobias and panic disorder, are complex traits that share at least one susceptibility locus. This method could be applied to other complex traits for which shared genetic-liability factors are thought to be important, such as substance dependencies.  相似文献   
994.
Conformational abnormalities and aggregation of alpha-synuclein (alpha-syn) have been linked to the pathogenesis of Parkinson's (PD) and related diseases. It has been shown that alpha-syn can stably bind artificial phospholipid vesicles through alpha-helix formation in its N-terminal repeat region. However, little is known about the membrane interaction in cells. In the current study, we determined the membrane-binding properties of alpha-syn to biological membranes by using bi-functional chemical crosslinkers, which allow the detection of transient, but specific, interactions. By utilizing various point mutations and deletions within alpha-syn, we demonstrated that the membrane interaction of alpha-syn in cells is also mediated by alpha-helix formation in the N-terminal repeat region. Moreover, the PD-linked A30P mutation causes reduced membrane binding, which is concordant with the artificial membrane studies. However, contrary to the interaction with artificial membranes, the interaction with biological membranes is rapidly reversible and is not driven by electrostatic attraction. Furthermore, the interaction of alpha-syn with cellular membranes occurs only in the presence of non-protein and non-lipid cytosolic components, which distinguishes it from the spontaneity of the interaction with artificial membranes. More interestingly, addition of the cytosolic preparation to artificial membranes resulted in the transient, charge-independent binding of alpha-syn similar to the interaction with biological membranes. These results suggest that in cells, alpha-syn is engaged in a fundamentally different mode of membrane interaction than the charge-dependent artificial membrane binding, and the mode of interaction is determined by the intrinsic properties of alpha-syn itself and by the cytoplasmic context.  相似文献   
995.
Rising rates of Histoplasma capsulatum infection are an emerging problem among the rapidly growing population of immune-compromised individuals. Although there is a growing understanding of systemic immunity against Histoplasma, little is known about the local granulomatous response, which is an important component in the control of infection. The focus of this article is the characterization of Histoplasma-induced granulomas. Five days after i.p. infection, infected macrophage appear in the liver and lung; however, no granulomas are apparent. Two days later, well-formed sarcoid granulomas are abundant in the lung and liver of infected mice, which contain all visible Histoplasma. Granulomas are dominated by macrophage and lymphocytes. Most of the Histoplasma and most of the apoptotic cells are found in the center of the lesions. We isolated liver granulomas at multiple time points after infection and analyzed the cellular composition, TCR gene usage, and cytokine production of granuloma-infiltrating cells. The lesions contain both CD4+ and CD8+ T cell subsets, and T cells are the primary source of IFN-gamma and IL-17. The main source of local TNF-alpha is macrophage. Chemokines are produced by both infiltrating macrophage and lymphocytes. Dendritic cells are present in granulomas; however, T cell expansion seems to occur systemically because TCR usage is very heterogeneous even at the level of individual lesions. This study is the first direct examination of host cellular responses in the Histoplasma-induced granuloma representing the specific interface between host and pathogen. Our studies will allow further analysis of key elements of host Histoplasma interactions at the site of chronic infection.  相似文献   
996.
997.
The Ca2+-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D2 receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D2 receptor, within an Arg-rich epitope that is also involved in the binding to Gi/o proteins and to the adenosine A2A receptor, with the formation of A2A-D2 receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A2A receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A2A-D2 receptor oligomerization. BRET competition experiments indicated that, in the A2A-D2 receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A2A receptor. Furthermore, Ca2+ was found to induce conformational changes in the CaM-A2A-D2 receptor oligomer and to selectively modulate A2A and D2 receptor-mediated MAPK signaling in the A2A-D2 receptor heteromer. These results may have implications for basal ganglia disorders, since A2A-D2 receptor heteromers are being considered as a target for anti-parkinsonian agents.G-protein-coupled receptors are able to form homo- and hetero-oligomers with unique biochemical and functional characteristics (17), and they are easily detected in vitro by using biophysical techniques (810). Heteromers of adenosine A2A and dopamine D2 receptors were one of the first G-protein-coupled receptor heteromers to be described (11). A close physical interaction between both receptors was shown using co-immunoprecipitation and co-localization assays (11) and fluorescence and bioluminescence resonance energy transfer (FRET2 or BRET) techniques (1214). At the biochemical level, two types of antagonistic A2A-D2 receptor interactions have been discovered that may explain the A2A-D2 receptor interactions described both at the neuronal and behavioral level (11, 1518). First, by means of an allosteric interaction in the receptor heteromer, stimulation of A2A receptor decreases the affinity of D2 receptor for their agonists (12). Second, the stimulation of the Gi/o-protein-coupled D2 receptor inhibits the cAMP accumulation induced by the stimulation of the Gs/olf-protein-coupled A2A receptor (11, 17, 18). In view of the well known role of dopamine in Parkinson disease, schizophrenia, and drug addiction, it has been suggested that the A2A-D2 receptor interactions in the central nervous system may provide new therapeutic approaches to combat these disorders (16, 19).An epitope-epitope electrostatic interaction between an Arg-rich epitope of the N terminus of the third intracellular loop (3IL) of the D2 receptor and an epitope containing a phosphorylated Ser localized in the distal part of the C terminus of the A2A receptor is involved in A2A-D2 receptor heteromer interface (14, 20, 21). The same Arg-rich epitope of the D2 receptor is able to interact with CaM (2225). In the absence of phosphorylated residues, adjacent aspartates or glutamates, which are abundant in CaM, may also form non-covalent complexes with Arg-rich epitopes (26). Therefore, CaM can potentially convey a Ca2+ signal to the D2 receptor through direct binding to the 3IL of the D2 receptor (22). Mass spectrometry data have shown that bovine CaM can form multiple non-covalent complexes with an Arg-rich peptide corresponding to the N-terminal region of the 3IL of the D2 receptor (VLRRRRKRVN) (24) as well as a peptide from the proximal C terminus of the A2A receptor (24). This epitope, whose sequence is 291RIREFRQTFR300 in the human A2A receptor, also contains several Arg residues. Since the suspected interaction between the A2A receptor and CaM was awaiting confirmation by assays using complete proteins, the present study was undertaken to demonstrate the existence of interactions between the A2A receptor and CaM both in a recombinant protein expression cell system and in the brain. A proteomics approach was used for the discovery of protein-protein interactions between the A2A receptor and CaM in rat brain, whereas BRET in transfected cells demonstrated a direct interaction between CaM and this receptor. Furthermore, by using BRET and sequential resonance energy transfer (SRET) techniques and analyzing MAPK signaling in transfected cells, evidence was obtained for CaM-A2A-D2 receptor oligomerization and a selective Ca2+-mediated modulation of A2A and D2 receptor function in the A2A-D2 receptor heteromer.  相似文献   
998.
999.
LKB1 is an upstream activating kinase for the AMP-activated protein kinase (AMPK) and at least 12 other AMPK-related kinases. LKB1 therefore acts as a master kinase regulating the activity of a wide range of downstream kinases, which themselves have diverse physiological roles. Here we identify a second form of LKB1 generated by alternative splicing of the LKB1 gene. The two LKB1 proteins have different C-terminal sequences generating a 50-kDa form (termed LKB1L) and a 48-kDa form (LKB1S). LKB1L is widely expressed in mouse tissues, whereas LKB1S has a restricted tissue distribution with predominant expression in the testis. LKB1S, like LKB1L, forms a complex with MO25 and STRAD, and phosphorylates and activates AMPK both in vitro and in intact cells. A phosphorylation site (serine 431 in mouse) and a farnesylation site (cysteine 433 in mouse) within LKB1L are not conserved in LKB1S raising the possibility that these sites might be involved in differential regulation and/or localization of the two forms of LKB1. However, we show that phosphorylation of serine 431 has no effect on LKB1L activity and that both LKB1L and LKB1S have similar patterns of subcellular localization. These results indicate that the physiological significance of the different forms of LKB1 is not related directly to differences in the C-terminal sequences but may be due to their differential patterns of tissue distribution.  相似文献   
1000.
Multidrug resistance of the pandemic H1N1-2009 strain of influenza has been reported due to widespread treatment using the neuraminidase (NA) inhibitors, oseltamivir (Tamiflu), and zanamivir (Relenza). From clinical data, the single I223R (IR(1)) mutant of H1N1-2009 NA reduced efficacy of oseltamivir and zanamivir by 45 and 10 times, (1) respectively. More seriously, the efficacy of these two inhibitors against the double mutant I223R/H275Y (IRHY(2)) was significantly reduced by a factor of 12?374 and 21 times, respectively, compared to the wild-type.(2) This has led to the question of why the efficacy of the NA inhibitors is reduced by the occurrence of these mutations and, specifically, why the efficacy of oseltamivir against the double mutant IRHY was significantly reduced, to the point where oseltamivir has become an ineffective treatment. In this study, 1 μs of molecular dynamics (MD) simulations was performed to answer these questions. The simulations, run using graphical processors (GPUs), were used to investigate the effect of conformational change upon binding of the NA inhibitors oseltamivir and zanamivir in the wild-type and the IR and IRHY mutant strains. These long time scale dynamics simulations demonstrated that the mechanism of resistance of IRHY to oseltamivir was due to the loss of key hydrogen bonds between the inhibitor and residues in the 150-loop. This allowed NA to transition from a closed to an open conformation. Oseltamivir binds weakly with the open conformation of NA due to poor electrostatic interactions between the inhibitor and the active site. The results suggest that the efficacy of oseltamivir is reduced significantly because of conformational changes that lead to the open form of the 150-loop. This suggests that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation, or by designing inhibitors that can form a hydrogen bond to the mutant R223 residue, thereby preventing competition between R223 and R152.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号