首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4201篇
  免费   342篇
  国内免费   10篇
  2023年   7篇
  2022年   38篇
  2021年   83篇
  2020年   63篇
  2019年   84篇
  2018年   104篇
  2017年   79篇
  2016年   150篇
  2015年   260篇
  2014年   263篇
  2013年   277篇
  2012年   384篇
  2011年   314篇
  2010年   189篇
  2009年   181篇
  2008年   277篇
  2007年   243篇
  2006年   218篇
  2005年   190篇
  2004年   192篇
  2003年   151篇
  2002年   145篇
  2001年   77篇
  2000年   63篇
  1999年   65篇
  1998年   39篇
  1997年   28篇
  1996年   12篇
  1995年   11篇
  1994年   17篇
  1993年   12篇
  1992年   26篇
  1991年   28篇
  1990年   16篇
  1989年   26篇
  1988年   24篇
  1987年   23篇
  1986年   23篇
  1985年   16篇
  1984年   15篇
  1983年   9篇
  1982年   14篇
  1981年   12篇
  1980年   11篇
  1979年   12篇
  1977年   9篇
  1976年   5篇
  1975年   13篇
  1974年   10篇
  1973年   8篇
排序方式: 共有4553条查询结果,搜索用时 46 毫秒
111.
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.  相似文献   
112.
Sialidases release the terminal sialic acid residue from a wide range of sialic acid-containing polysaccharides. Bacteroides thetaiotaomicron, a symbiotic commensal microbe, resides in and dominates the human intestinal tract. We characterized the recombinant sialidase from B. thetaiotaomicron (BTSA) and demonstrated that it has broad substrate specificity with a relative activity of 97, 100 and 64 for 2,3-, 2,6- and 2,8-linked sialic substrates, respectively. The hydrolysis activity of BTSA was inhibited by a transition state analogue, 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid, by competitive inhibition with a Ki value of 35 μM. The structure of BSTA was determined at a resolution of 2.3 Å. This structure exhibited a unique carbohydrate-binding domain (CBM) at its N-terminus (a.a. 23–190) that is adjacent to the catalytic domain (a.a. 191–535). The catalytic domain has a conserved arginine triad with a wide-open entrance for the substrate that exposes the catalytic residue to the surface. Unlike other pathogenic sialidases, the polysaccharide-binding site in the CBM is near the active site and possibly holds and positions the polysaccharide substrate directly at the active site. The structural feature of a wide substrate-binding groove and closer proximity of the polysaccharide-binding site to the active site could be a unique signature of the commensal sialidase BTSA and provide a molecular basis for its pharmaceutical application.  相似文献   
113.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
114.
Two closely related bacterial species, Segniliparus rotundus and Segniliparus rugosus, have emerged as important human pathogens, but little is known about the immune responses they elicit or their comparative pathophysiologies. To determine the virulence and immune responses of the two species, we compared their abilities to grow in phagocytic and non-phagocytic cells. Both species maintained non-replicating states within A549 epithelial cells. S. rugosus persisted longer and multiplied more rapidly inside murine bone marrow-derived macrophages (BMDMs), induced more pro-inflammatory cytokines, and induced higher levels of macrophage necrosis. Activation of BMDMs by both species was mediated by toll-like receptor 2 (TLR2), followed by mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) signaling pathways, indicating a critical role for TLR2 in Segniliparus-induced macrophage activation. S. rugosus triggered faster and stronger activation of MAPK signaling and IκB degradation, indicating that S. rugosus induces more pro-inflammatory cytokines than S. rotundus. Multifocal granulomatous inflammations in the liver and lung were observed in mice infected with S. rugosus, but S. rotundus was rapidly cleared from all organs tested within 15 days post-infection. Furthermore, S. rugosus induced faster infiltration of innate immune cells such as neutrophils and macrophages to the lung than S. rotundus. Our results suggest that S. rugosus is more virulent and induces a stronger immune response than S. rotundus.  相似文献   
115.
Influenza epidemics arise through the accumulation of viral genetic changes. The emergence of new virus strains coincides with a higher level of influenza-like illness (ILI), which is seen as a peak of a normal season. Monitoring the spread of an epidemic influenza in populations is a difficult and important task. Twitter is a free social networking service whose messages can improve the accuracy of forecasting models by providing early warnings of influenza outbreaks. In this study, we have examined the use of information embedded in the Hangeul Twitter stream to detect rapidly evolving public awareness or concern with respect to influenza transmission and developed regression models that can track levels of actual disease activity and predict influenza epidemics in the real world. Our prediction model using a delay mode provides not only a real-time assessment of the current influenza epidemic activity but also a significant improvement in prediction performance at the initial phase of ILI peak when prediction is of most importance.  相似文献   
116.
We participated in CARPI rounds 38-45 both as a server predictor and a human predictor. These CAPRI rounds provided excellent opportunities for testing prediction methods for three classes of protein interactions, that is, protein-protein, protein-peptide, and protein-oligosaccharide interactions. Both template-based methods (GalaxyTBM for monomer protein, GalaxyHomomer for homo-oligomer protein, GalaxyPepDock for protein-peptide complex) and ab initio docking methods (GalaxyTongDock and GalaxyPPDock for protein oligomer, GalaxyPepDock-ab-initio for protein-peptide complex, GalaxyDock2 and Galaxy7TM for protein-oligosaccharide complex) have been tested. Template-based methods depend heavily on the availability of proper templates and template-target similarity, and template-target difference is responsible for inaccuracy of template-based models. Inaccurate template-based models could be improved by our structure refinement and loop modeling methods based on physics-based energy optimization (GalaxyRefineComplex and GalaxyLoop) for several CAPRI targets. Current ab initio docking methods require accurate protein structures as input. Small conformational changes from input structure could be accounted for by our docking methods, producing one of the best models for several CAPRI targets. However, predicting large conformational changes involving protein backbone is still challenging, and full exploration of physics-based methods for such problems is still to come.  相似文献   
117.
This study examined the control of nosemosis caused by Nosema ceranae, one of the hard-to-control diseases of honey bees, using RNA interference (RNAi) technology. Double-stranded RNA (dsRNA) for RNAi application targeted the mitosome-related genes of N. ceranae. Among the various mitosome-related genes, NCER_100882, NCER_101456, NCER_100157, and NCER_100686 exhibited relatively low homologies with the orthologs of Apis mellifera. Four gene-specific dsRNAs were prepared against the target genes and applied to the infected A. mellifera to analyze Nosema proliferation and honey bee survival. Two dsRNAs specifics to NCER_101456 and NCER_100157 showed high inhibitory effects on spore production by exhibiting only 62% and 67%, respectively, compared with the control. In addition, these dsRNA treatments significantly rescued the honey bees from the fatal nosemosis. It was confirmed that the inhibition of Nosema spore proliferation and the increase in the survival rate of honey bees were resulted from a decrease in the expression level of each target gene by dsRNA treatment. However, dsRNA mixture treatment was no more effective than single treatments in the rescue from the nosemosis. It is expected that the four newly identified mitosome-related target genes in this study can be effectively used for nosemosis control using RNAi technology.  相似文献   
118.
Interleukin-1β (IL-1β) is a potent proinflammatory and immunoregulatory cytokine playing an important role in the progression of rheumatoid arthritis (RA). However, the signaling network of IL-1β in synoviocytes from RA patients is still poorly understood. Here, we show for the first time that phospholipase D1 (PLD1), but not PLD2, is selectively upregulated in IL-1β-stimulated synoviocytes, as well as synovium, from RA patients. IL-1β enhanced the binding of NF-κB and ATF-2 to the PLD1 promoter, thereby enhancing PLD1 expression. PLD1 inhibition abolished the IL-1β-induced expression of proinflammatory mediators and angiogenic factors by suppressing the binding of NF-κB or hypoxia-inducible factor 1α to the promoter of its target genes, as well as IL-1β-induced proliferation or migration. However, suppression of PLD1 activity promoted cell cycle arrest via transactivation of FoxO3a. Furthermore, PLD1 inhibitor significantly suppressed joint inflammation and destruction in IL-1 receptor antagonist-deficient (IL-1Ra−/−) mice, a model of spontaneous arthritis. Taken together, these results suggest that the abnormal upregulation of PLD1 may contribute to the pathogenesis of IL-1β-induced chronic arthritis and that a selective PLD1 inhibitor might provide a potential therapeutic molecule for the treatment of chronic inflammatory autoimmune disorders.  相似文献   
119.
Human cytosolic aspartyl‐tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi‐tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C‐terminal end of the N‐helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N‐helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post‐translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions.Proteins 2013; 81:1840–1846. © 2013 Wiley Periodicals, Inc.  相似文献   
120.
Phosphoserine phosphatase (PSP) catalyzes the final and irreversible step of L‐serine synthesis by hydrolyzing phosphoserine to produce L ‐serine and inorganic phosphate. Developing a therapeutic drug that interferes with serine production is of great interest to regulate the pathogenicity of some bacteria and control D ‐serine levels in neurological diseases. We determined the crystal structure of PSP from the hyperthermophilic archaeon Thermococcus onnurineus at 1.8 Å resolution, revealing an NDSB ligand bound to a novel site that is located in a fissure between the catalytic domain and the CAP module. The structure shows a half‐open conformation of the CAP 1 module with a unique protruding loop of residues 150–155 that possesses a helical conformation in other structures of homologous PSPs. Activity assays indicate that the enzyme exhibits marginal PSP activity at low temperature but a sharp increase in the kcat/KM value, approximately 22 fold, when the temperature is increased. Structural and biochemical analyses suggest that the protruding loop in the active site might be an essential component for the regulation of the activity of PSP from hyperthermophilic T. onnurineus. Identification of this novel binding site distantly located from the catalytic site may be exploited for the development of effective therapeutic allosteric inhibitors against PSP activity. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号