首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12766篇
  免费   1058篇
  国内免费   18篇
  13842篇
  2023年   51篇
  2022年   162篇
  2021年   220篇
  2020年   144篇
  2019年   202篇
  2018年   283篇
  2017年   210篇
  2016年   409篇
  2015年   655篇
  2014年   715篇
  2013年   771篇
  2012年   976篇
  2011年   939篇
  2010年   576篇
  2009年   548篇
  2008年   775篇
  2007年   716篇
  2006年   649篇
  2005年   610篇
  2004年   621篇
  2003年   537篇
  2002年   478篇
  2001年   401篇
  2000年   313篇
  1999年   293篇
  1998年   112篇
  1997年   111篇
  1996年   72篇
  1995年   70篇
  1994年   55篇
  1993年   42篇
  1992年   108篇
  1991年   116篇
  1990年   70篇
  1989年   83篇
  1988年   70篇
  1987年   67篇
  1986年   55篇
  1985年   52篇
  1984年   49篇
  1983年   27篇
  1982年   33篇
  1981年   30篇
  1979年   31篇
  1978年   26篇
  1977年   31篇
  1976年   29篇
  1975年   28篇
  1974年   34篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Many microbial pathogens subvert cell surface heparan sulfate proteoglycans (HSPGs) to infect host cells in vitro. The significance of HSPG-pathogen interactions in vivo, however, remains to be determined. In this study, we examined the role of syndecan-1, a major cell surface HSPG of epithelial cells, in Staphylococcus aureus corneal infection. We found that syndecan-1 null (Sdc1(-/-)) mice significantly resist S. aureus corneal infection compared with wild type (WT) mice that express abundant syndecan-1 in their corneal epithelium. However, syndecan-1 did not bind to S. aureus, and syndecan-1 was not required for the colonization of cultured corneal epithelial cells by S. aureus, suggesting that syndecan-1 does not mediate S. aureus attachment to corneal tissues in vivo. Instead, S. aureus induced the shedding of syndecan-1 ectodomains from the surface of corneal epithelial cells. Topical administration of purified syndecan-1 ectodomains or heparan sulfate (HS) significantly increased, whereas inhibition of syndecan-1 shedding significantly decreased the bacterial burden in corneal tissues. Furthermore, depletion of neutrophils in the resistant Sdc1(-/-) mice increased the corneal bacterial burden to that of the susceptible WT mice, suggesting that syndecan-1 moderates neutrophils to promote infection. We found that syndecan-1 does not affect the infiltration of neutrophils into the infected cornea but that purified syndecan-1 ectodomain and HS significantly inhibit neutrophil-mediated killing of S. aureus. These data suggest a previously unknown bacterial subversion mechanism where S. aureus exploits the capacity of syndecan-1 ectodomains to inhibit neutrophil-mediated bacterial killing mechanisms in an HS-dependent manner to promote its pathogenesis in the cornea.  相似文献   
82.
83.
Alzheimer’s disease (AD) is characterized by an excessive accumulation of toxic amyloid beta (Aβ) plaques and memory dysfunction. The onset of AD is influenced by age, genetic background, and impaired glucose metabolism in the brain. Several studies have demonstrated that diabetes involving insulin resistance and glucose tolerance could lead to AD, ultimately resulting in cognitive dysfunction. Even though the relationship between diabetes and AD was indicated by significant evidences, the critical mechanisms and metabolic alterations in diabetes induced AD are not clear until now. Recently, iron metabolism has been shown to play multiple roles in the central nervous system (CNS). Iron deficiency and overload are associated with neurodegenerative diseases. Iron binds to Aβ and subsequently regulates Aβ toxicity in the CNS. In addition, previous studies have shown that iron is involved in the aggravation of insulin resistance. Considering these effects of iron metabolism in CNS, we expect that iron metabolism may play crucial roles in diabetic AD brain. Thus, we review the recent evidence regarding the relationship between diabetes-induced AD and iron metabolism.  相似文献   
84.
Jang  J. H.  Kim  S. -H.  Khaine  I.  Kwak  M. J.  Lee  H. K.  Lee  T. Y.  Lee  W. Y.  Woo  S. Y. 《Photosynthetica》2018,56(4):1188-1203
Photosynthetica - This study aimed to determine the effects of plant growth-promoting rhizobacteria Bacillus subtilis JS on the growth and physiological changes of Populus euramericana and Populus...  相似文献   
85.
Kumar S  Tsai CJ  Nussinov R 《Biochemistry》2003,42(17):4864-4873
The difference between the heat (T(G)) and the cold (T(G)') denaturation temperatures defines the temperature range (T(Range)) over which the native state of a reversible two-state protein is thermodynamically stable. We have performed a correlation analysis for thermodynamic parameters in a selected data set of structurally nonhomologous single-domain reversible two-state proteins. We find that the temperature range is negatively correlated with the protein size and with the heat capacity change (DeltaC(p)) but is positively correlated with the maximal protein stability [DeltaG(T(S))]. The correlation between the temperature range and maximal protein stability becomes highly significant upon normalization of the maximal protein stability with protein size. The melting temperature (T(G)) also shows a negative correlation with protein size. Consistently, T(G) and T(G)' show opposite correlations with DeltaC(p), indicating a dependence of the T(Range) on the curvature of the protein stability curve. Substitution of proteins in our data set with their homologues and arbitrary addition or removal of a protein in the data set do not affect the outcome of our analysis. Simulations of the thermodynamic data further indicate that T(Range) is more sensitive to variations in curvature than to the slope of the protein stability curve. The hydrophobic effect in single domains is the principal reason for these observations. Our results imply that larger proteins may be stable over narrower temperature ranges and that smaller proteins may have higher melting temperatures, suggesting why protein structures often differentiate into multiple substructures with different hydrophobic cores. Our results have interesting implications for protein thermostability.  相似文献   
86.
Galphah (transglutaminase type II; tissue transglutaminase) is a bifunctional enzyme with transglutaminase (TGase) and guanosine triphosphatase (GTPase) activities. The GTPase function of Galphah is involved in hormonal signaling and cell growth while the TGase function plays an important role in apoptosis and in cross-linking extracellular and intracellular proteins. To analyze the regulation of these dual enzymatic activities we examined their calcium-dependence and thermal stability in enzymes from several cardiac sources (mouse heart, and normal, ischemic and dilated cardiomyopathic human hearts). The GTP binding activity of Galphah was markedly inhibited by Ca2+ whereas the TGase activity was strongly stimulated, suggesting that Ca2+ acts as a regulator, switching Galphah from a GTPase to a TGase. The TGase function of Galphah of both mouse and human hearts was more thermostable in the presence of Ca2+.  相似文献   
87.
We use the well-known structural and functional properties of the gramicidin A channel to test the appropriateness of force fields commonly used in molecular dynamics (MD) simulations of ion channels. For this purpose, the high-resolution structure of the gramicidin A dimer is embedded in a dimyristoylphosphatidylcholine bilayer, and the potential of mean force of a K(+) ion is calculated along the channel axis using the umbrella sampling method. Calculations are performed using two of the most common force fields in MD simulations: CHARMM and GROMACS. Both force fields lead to large central barriers for K(+) ion permeation, that are substantially higher than those deduced from the physiological data by inverse methods. In long MD simulations lasting over 60 ns, several ions are observed to enter the binding site but none of them crossed the channel despite the presence of a large driving field. The present results, taken together with many earlier studies, highlights the shortcomings of the standard force fields used in MD simulations of ion channels and calls for construction of more appropriate force fields for this purpose.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号