首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2710篇
  免费   168篇
  国内免费   2篇
  2024年   3篇
  2023年   7篇
  2022年   30篇
  2021年   62篇
  2020年   23篇
  2019年   42篇
  2018年   58篇
  2017年   41篇
  2016年   84篇
  2015年   146篇
  2014年   174篇
  2013年   194篇
  2012年   263篇
  2011年   226篇
  2010年   171篇
  2009年   153篇
  2008年   197篇
  2007年   165篇
  2006年   158篇
  2005年   124篇
  2004年   121篇
  2003年   112篇
  2002年   65篇
  2001年   61篇
  2000年   58篇
  1999年   40篇
  1998年   11篇
  1997年   19篇
  1996年   14篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有2880条查询结果,搜索用时 93 毫秒
951.
Although many peptides have therapeutic effects against diverse disease, their short half-lives in vivo hurdle their application as drug candidates. To extend the short elimination half-lives of therapeutic peptides, we developed a novel delivery platform for therapeutic peptides using an anti-hapten antibody and its corresponding hapten. We selected cotinine because it is non-toxic, has a well-studied metabolism, and is physiologically absent. We conjugated WKYMVm-NH2, an anti-sepsis therapeutic peptide, to cotinine and showed that the conjugated peptide in complex with an anti-cotinine antibody has a significantly improved in vivo half-life while retaining its therapeutic efficacy. We suggest that this novel delivery platform for therapeutic peptides will be very useful to develop effective peptide therapeutics.  相似文献   
952.
Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.  相似文献   
953.
954.
Polyunsaturated fatty acids (PUFAs) have important pharmacological effects on mammalian cells. Here, we show that carboxyl group-containing PUFAs inhibit lysophosphatidic acid (LPA)-induced focal adhesion formation, thereby inhibiting migration and adhesion. Carboxyl group-containing PUFAs inhibit LPA-induced calcium mobilization, whereas ethyl ester-group containing PUFAs have no effect. In addition, carboxyl group-containing PUFAs functionally inhibit LPA-dependent RhoA activation. Given these results, we suggest that PUFAs may inhibit LPA-induced calcium/RhoA signaling pathways leading to focal adhesion formation. Carboxyl group-containing PUFAs may have a functional role in this regulatory mechanism.  相似文献   
955.
956.
Phosphoglucomutase (PGM)1 catalyzes the reversible conversion reaction between glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P). Although both G-1-P and G-6-P are important intermediates for glucose and glycogen metabolism, the biological roles and regulatory mechanisms of PGM1 are largely unknown. In this study we found that T553 is obligatory for PGM1 stability and the last C-terminal residue, T562, is critical for its activity. Interestingly, depletion of PGM1 was associated with declined cellular glycogen content and decreased rates of glycogenolysis and glycogenesis. Furthermore, PGM1 depletion suppressed cell proliferation under long-term repetitive glucose depletion. Our results suggest that PGM1 is required for sustained cell growth during nutritional changes, probably through regulating the balance of G-1-P and G-6-P in order to satisfy the cellular demands during nutritional stress.  相似文献   
957.
Binge drinking is a common form of alcohol abuse that involves repeated rounds of intoxication followed by withdrawal. The episodic effects of binge drinking and withdrawal on brain resident cells are thought to contribute to neural remodeling and neurological damage. However, the molecular mechanisms for these neurodegenerative effects are not understood. Ethanol (EtOH) regulates the metabolism of ceramide, a highly bioactive lipid that is enriched in brain. We used a mouse model of binge drinking to determine the effects of EtOH intoxication and withdrawal on brain ceramide metabolism. Intoxication and acute alcohol withdrawal were each associated with distinct changes in ceramide regulatory genes and metabolic products. EtOH intoxication was accompanied by decreased concentrations of multiple ceramides, coincident with reductions in the expression of enzymes involved in the production of ceramides, and increased expression of ceramide‐degrading enzymes. EtOH withdrawal was associated with specific increases in ceramide C16:0, C18:0, and C20:0 and increased expression of enzymes involved with ceramide production. These data suggest that EtOH intoxication may evoke a ceramide phenotype that is neuroprotective, whereas EtOH withdrawal results in a metabolic shift that increases the production of potentially toxic ceramide species.

  相似文献   

958.
Sensitivity to phenylthiocarbamide (PTC) has a bimodal distribution pattern and the genotype of the TAS2R38 gene, which is composed of combinations of three coding single nucleotide polymorphisms (SNPs), p.A49P (c.145G>C), p.V262A (c.785T>C) and p.I296 V (c.886A>G), determines the ability or inability to taste PTC. In this study, we developed a tool for genotyping of these SNPs in the TAS2R38 gene using SNaPshot minisequencing and investigated the accuracy of the tool in 100 subjects who were genotyped by Sanger sequencing. The minor allele frequencies of the three SNPs were 0.39, and these genotypes corresponded to those determined by direct sequencing. In conclusion, we successfully developed a precise and rapid genetic tool for analysis of PTC genotype associated with bitter taste perception.  相似文献   
959.
The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H2O2 (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H2O2, or c-Myc activation.  相似文献   
960.
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by the formation of multiple fluid-filled cysts in bilateral kidneys. Although mutations in polycystic kidney disease 1 (PKD1) are predominantly responsible for ADPKD, the focal and sporadic property of individual cystogenesis suggests another molecular mechanism such as epigenetic alterations. To determine the epigenomic alterations in ADPKD and their functional relevance, ADPKD and non-ADPKD individuals were analyzed by unbiased methylation profiling genome-wide and compared with their expression data. Intriguingly, PKD1 and other genes related to ion transport and cell adhesion were hypermethylated in gene-body regions, and their expressions were downregulated in ADPKD, implicating epigenetic silencing as the key mechanism underlying cystogenesis. Especially, in patients with ADPKD, PKD1 was hypermethylated in gene-body region and it was associated with recruitment of methyl-CpG-binding domain 2 proteins. Moreover, treatment with DNA methylation inhibitors retarded cyst formation of Madin-Darby Canine Kidney cells, accompanied with the upregulation of Pkd1 expression. These results are consistent with previous studies that knock-down of PKD1 was sufficient for cystogenesis. Therefore, our results reveal a critical role for hypermethylation of PKD1 and cystogenesis-related regulatory genes in cyst development, suggesting epigenetic therapy as a potential treatment for ADPKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号