首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5327篇
  免费   400篇
  国内免费   3篇
  2024年   7篇
  2023年   20篇
  2022年   78篇
  2021年   111篇
  2020年   89篇
  2019年   132篇
  2018年   162篇
  2017年   143篇
  2016年   245篇
  2015年   365篇
  2014年   358篇
  2013年   418篇
  2012年   474篇
  2011年   480篇
  2010年   323篇
  2009年   271篇
  2008年   316篇
  2007年   310篇
  2006年   278篇
  2005年   260篇
  2004年   223篇
  2003年   203篇
  2002年   180篇
  2001年   59篇
  2000年   32篇
  1999年   31篇
  1998年   37篇
  1997年   17篇
  1996年   20篇
  1995年   14篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
  1962年   1篇
排序方式: 共有5730条查询结果,搜索用时 15 毫秒
861.
The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21Cip1/Waf1, and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21Cip1/Waf1. Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function.  相似文献   
862.
863.
864.
865.
To survive in a continuously changing environment, bacteria sense concentration gradients of attractants or repellents, and purposefully migrate until a more favourable habitat is encountered. While glucose is known as the most effective attractant, the flagellar biosynthesis and hence chemotactic motility has been known to be repressed by glucose in some bacteria. To date, the only known regulatory mechanism of the repression of flagellar synthesis by glucose is via downregulation of the cAMP level, as shown in a few members of the family Enterobacteriaceae. Here we show that, in Vibrio vulnificus, the glucose‐mediated inhibition of flagellar motility operates by a completely different mechanism. In the presence of glucose, EIIAGlc is dephosphorylated and inhibits the polar localization of FapA (flagellar assembly protein A) by sequestering it from the flagellated pole. A loss or delocalization of FapA results in a complete failure of the flagellar biosynthesis and motility. However, when glucose is depleted, EIIAGlc is phosphorylated and releases FapA such that free FapA can be localized back to the pole and trigger flagellation. Together, these data provide new insight into a bacterial strategy to reach and stay in the glucose‐rich area.  相似文献   
866.
A polyene compound NPP identified in Pseudonocardia autotrophica was shown to contain an aglycone identical to nystatin, but to harbor a unique disaccharide moiety that led to higher solubility and reduced hemolytic activity. Recently, it was revealed that the final step of NPP (nystatin-like polyene) biosynthesis is C10 regio-specific hydroxylation by the cytochrome P450 hydroxylase (CYP) NppL (Kim et al. [7]). Through mutation and cross-complementation, here we found that NppL preferred a polyene substrate containing a disaccharide moiety for C10 hydroxylation, while its orthologue NysL involved in nystatin biosynthesis showed no substrate preference toward mono- and disaccharide moieties, suggesting that two homologous polyene CYPs, NppL and NysL might possess a unique domain recognizing a sugar moiety. Two hybrid NppL constructs containing the C-terminal domain of NysL exhibited no substrate preference toward 10-deoxy NPP and 10-deoxy nystatin-like NysL, implying that the C-terminal domain plays a major role in differentiating the sugar moiety responsible for substrate specificity. Further C-terminal domain dissection of NppL revealed that the last fifty amino acids play a critical role in determining substrate specificity of polyene-specific hydroxylation, setting the stage for the biotechnological application of hydroxyl diversification for novel polyene biosynthesis in actinomycetes.  相似文献   
867.
The amount of ultraviolet-B radiation (UV-B: 280–320 nm) reaching Earth’s surface is expected to increase due to stratospheric ozone depletion. This could cause significant biological damage in plants, and serious yield losses in crops. Soybean [Glycine max (L.) Merr.], a major legume crop, is known to be sensitive to UV-B radiation. Thus, developing a UV-B-tolerant soybean is an efficient and economical strategy to avoid putative yield losses through increased UV-B irradiation. The objective of this study is to identify the novel quantitative trait loci (QTLs) for UV-B tolerance in the soybean using high-density genetic linkage mapping. One hundred and fifteen F8-derived F12 recombinant inbred lines developed from a cross between the UV-B susceptible cultivar, Keunol, and a tolerant breeding line, Iksan 10, were used. Three categories of phenotypic traits were scored: degree of leaf color change, degree of leaf shape change and degree of total plant damage. A genome-wide molecular genetic linkage map containing 8691 single nucleotide polymorphism markers was constructed using the recently developed genotyping platform, the 180K Axiom SoyaSNP assay. Using composite interval mapping analysis, one major candidate QTL on chromosome 7 was identified and designated qUVBT1, and is located between two flanking makers, AX-90437826 and AX-90317546, within 1.6 cM, corresponding to a ~24-kb physical region with six annotated gene models. One of them is a homolog of yeast RAD23, which has previously been reported to be a UV excision repair protein. This result could be valuable in breeding new UV-B-tolerant soybean cultivars and elucidating the UV-B response mechanism in soybean plants.  相似文献   
868.
Induction of endoplasmic reticulum (ER)‐to‐Golgi blockade or ER stress induces Golgi reassembly stacking protein (GRASP)‐mediated, Golgi‐independent unconventional cell‐surface trafficking of the folding‐deficient ΔF508‐cystic fibrosis transmembrane conductance regulator (CFTR). However, molecular mechanisms underlying this process remain elusive. Here, we show that phosphorylation‐dependent dissociation of GRASP homotypic complexes and subsequent relocalization of GRASP to the ER play a critical role in the unconventional secretion of CFTR. Immunolocalization analyses of mammalian cells revealed that the Golgi protein GRASP55 was redistributed to the ER by stimuli that induce unconventional secretion of ΔF508‐CFTR, such as induction of ER‐to‐Golgi blockade by the Arf1 mutant. Notably, the same stimuli also induced phosphorylation of regions near the C‐terminus of GRASP55 and dissociation of GRASP homomultimer complexes. Furthermore, phosphorylation‐mimicking mutations of GRASP55 induced the monomerization and ER relocalization of GRASP55, and these changes were nullified by phosphorylation‐inhibiting mutations. These results provide mechanistic insights into how GRASP accesses the ER‐retained ΔF508‐CFTR and mediates the ER stress‐induced unconventional secretion pathway.   相似文献   
869.
Genetically modified mesenchymal stem cells (MSCs) are potentially valuable tools for the novel treatment of human illnesses. Here, we investigated whether gene transfers by self-complementary adeno-associated viruses (scAAV) lead to promising genetic modification in human bone marrow and umbilical cord blood MSCs. Of the various scAAVs, scAAV2, and scAAV5 effectively and safely expressed transgenes in both hMSCs. Transduction efficiency with scAAV2 at 1000 multiplicity of infection was 66.3+/-9.4% and 67.6+/-6.7% in bone marrow and umbilical cord blood MSCs, respectively. A co-infection study showed that the distinct scAAV2 and scAAV5 can effectively express different transgenes in the same hMSC. hMSCs transduced by scAAVs showed long-term gene expression for three months in rat brains. Genetic modification by scAAVs did not affect osteogenic differentiation of hMSCs. Therefore, the present study strongly supports the promising potential of scAAVs as a technical platform for safe, long-term transgene expression in hMSCs.  相似文献   
870.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号