首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5154篇
  免费   379篇
  国内免费   2篇
  5535篇
  2024年   4篇
  2023年   20篇
  2022年   79篇
  2021年   101篇
  2020年   82篇
  2019年   110篇
  2018年   152篇
  2017年   134篇
  2016年   193篇
  2015年   334篇
  2014年   352篇
  2013年   407篇
  2012年   453篇
  2011年   440篇
  2010年   294篇
  2009年   271篇
  2008年   315篇
  2007年   328篇
  2006年   268篇
  2005年   246篇
  2004年   227篇
  2003年   190篇
  2002年   175篇
  2001年   68篇
  2000年   42篇
  1999年   36篇
  1998年   41篇
  1997年   21篇
  1996年   24篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1985年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1971年   3篇
  1966年   2篇
排序方式: 共有5535条查询结果,搜索用时 15 毫秒
31.
To study the characteristics of recombinant thin aggregative fimbriae of salmonella and to develop a vaccine for salmonella infections, the AgfA subunit gene was amplified from Salmonella entiritidis using PCR. Maltose binding protein (MBP)-AgfA fusion protein was over-produced in E. coli and purified. Antibody against MBP-AgfA was prepared and its immunogenicity was studied.  相似文献   
32.
Hau PM  Tsang CM  Yip YL  Huen MS  Tsao SW 《PloS one》2011,6(6):e21176
The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.  相似文献   
33.
Phellinus linteus is a fungus which is found primarily in tropical regions of the Americas, Africa, and Asia.P. linteus has been used in traditional medical practice for the treatment of arthritis, liver damage and cancer. Angiogenesis is a process that involves migration, proliferation and cell differentiation, as well as the formation of new capillary structures. The anti-angiogenic activities evidenced by natural compounds may actually be a critical effect for the inhibition of angiogenesis-dependent disease by these agents via the blockage of vascular development. This study assessed the effects of water extracts fromP. linteus (Phellinus extracts) on primary cultured porcine coronary artery endothelial cells (PCAECs).Phellinus extracts induced no changes in DNA synthesis or cell numbers, but inhibited the migration of PCAECs.Phellinus extracts also induced a reduction in the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9. Our results show that, in endothelial cells,Phellinus extracts may inhibit angiogenesis by reducing levels of MMP-2 and MMP-9 secretion.  相似文献   
34.
Protein pattern has played an important role in biosensors, bioMEMS, tissue engineering, fundamental studies of cell biology, and basic proteomics research. Here, we developed a straightforward and effective protein patterning technique using macroporous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel micropatterns as a three-dimensional (3D) template for protein immobilization. Micropatterns of macroporous hydrogels with inverse opal structures were prepared on poly(ethylene glycol) (PEG)-coated silicon substrates by combining a colloidal crystal templating method with photopatterning. The resultant inverse opal hydrogel (IOH) micropatterns were modified with 3-aminopropyltriethoxysilane using the hydroxyl groups in PHEMA for the covalent immobilization of proteins. Proteins were selectively immobilized only on the hydrogel micropatterns, while the PEG regions served as an effective barrier to protein adsorption. Because of their highly ordered and interconnected 3D macroporous structures and large internal surface areas, protein loading in the IOH micropattern was about six times greater than that on a non-porous hydrogel micropattern, which consequently improved the protein activity. The porosity of the hydrogel micropatterns could be controlled using different sizes of colloidal nanoparticles, and using smaller nanoparticles produced hydrogel micropatterns with higher protein loading capacities and activities. To demonstrate the potential use of IOH micropatterns in biosensor systems, biotin was micropatterned on the hydrogels and the specific binding of streptavidin was successfully assayed using IOH micropatterns with better fluorescence signals and sensitivity than that of the corresponding non-porous hydrogel micropatterns.  相似文献   
35.
Entomopathogenic fungi have great potential to control agricultural and horticultural insect pests, however optimizing conidial production systems to demonstrate high productivity and stability still needs additional efforts for successful field application and industrialization. Although many virulent entomopathogenic fungal isolates have been viewed as potential candidates in a laboratory environment, very few of the isolates are being used in practice for application in agricultural fields as commercial products. I. javanicus is an entomopathogenic fungus that is parasitic to various diverse coleopteran and lepidopteran insects and thought good candidate as biopesticdes. In this work, the basic characteristics of two entomopathogenic fungi, I. javanica FG340 and Pf04, were investigated in morphological examinations, genetic identification, and virulence against Thrips palmi, and then the feasibility of various grains substrates for conidial production was assessed, particularly focusing on conidial productivity and thermotolerance. Isaria javanica FG340 and Pf04 conidia were solid-cultured on 12 grains for 14?days in a Petri dish. Of the tested Italian millet, perilla seed, millet and barley-based cultures showed high conidial production. The four-grain media yielded >1?×?109 conidia/g of I. javanica FG340 and Pf04. Pf04 strain had enhanced thermotolerance up to 45?°C when cultured on Italian millet. In application, it was easy to make a conidial suspension using the cultured grains, and several surfactants were tested to release the conidia. This work suggests several possible inexpensive grain substrates by which to promote conidial production combined with enhanced stability against exposure to high temperature.  相似文献   
36.
Levoglucosan is a major product of biomass pyrolysis. While this pyrolyzed biomass, also known as bio-oil, contains sugars that are an attractive fermentation substrate, commonly-used biocatalysts, such as Escherichia coli, lack the ability to metabolize this anhydrosugar. It has previously been shown that recombinant expression of the levoglucosan kinase enzyme enables use of levoglucosan as carbon and energy source. Here, ethanologenic E. coli KO11 was engineered for levoglucosan utilization by recombinant expression of levoglucosan kinase from Lipomyces starkeyi. Our engineering strategy uses a codon-optimized gene that has been chromosomally integrated within the pyruvate to ethanol (PET) operon and does not require additional antibiotics or inducers. Not only does this engineered strain use levoglucosan as sole carbon source, but it also ferments levoglucosan to ethanol. This work demonstrates that existing biocatalysts can be easily modified for levoglucosan utilization.  相似文献   
37.
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.  相似文献   
38.
Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), have been considered to have a beneficial effect against various diseases that are mediated by the reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against oxidative stresses, the lack of their transduction ability into cells resulted in a limited ability to detoxify intracellular ROS. To render the SOD enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant SOD proteins were generated. A human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene was fused with a gene fragment that encodes the 9 amino acids Tat protein transduction domain (RKKRRQRRR) of HIV-1 and lysine rich peptide (KKKKKKKKK) in a bacterial expression vector in order to produce a genetic in-frame Tat-SOD and 9Lys-SOD fusion protein, respectively. The expressed and purified Tat-SOD and 9Lys-SOD fusion proteins can transduce into human fibroblast cells, and they were enzymatically active and stable for 24 h. The cell viability of the fibroblast cells that were treated with paraquat, an intracellular superoxide anion generator, was increased by the transduced Tat-SOD or 9Lys-SOD. The transduction efficacy of 9Lys-SOD was more efficient than that of Tat-SOD. We evaluated the ability of the SOD fusion pmteins to transduce into animal skin. This analysis showed that Tat-SOD and 9Lys-SOD fusion proteins efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin (judged by the immunohistochemistry and specific enzyme activities). The enzymatic activity of the transduced 9Lys-SOD was higher than that of Tat-SOD, indicating that the penetration of 9Lys-SOD was more efficient when put into the skin. These results suggest Tat-SOD and 9Lys-SOD fusion proteins can be used as anti-aging cosmetics, or in protein therapy, for various disorders that are related to this antioxidant enzyme and ROS.  相似文献   
39.
40.
In this study, we determined the effect of organosolv pretreatment on herbaceous biomasses corn stover and wheat straw, by using high-concentration ethanol as the solvent. A high-concentration of ethanol allows for the easy reuse and recycling of the solvent. First, we tested the effects of ethanol pretreatments at 60 and 99.5% (w/w) and found that highest solvent concentration resulted in low glucose digestibility. The maximum enzymatic glucose digestibility with 60% ethanol was 92.6% at 190°C for 120 min (using corn stover) and 86.9% at 190°C for 120 min (using wheat straw). In contrast, the digestion rates with 99.5% ethanol were 68.8 and 77.4% under the same conditions, respectively, indicating that there is a limit to the use of high-concentration ethanol as the solvent. To overcome this limitation, we applied a mechanical pretreatment step before the chemical pretreatment. Subsequently, glucose digestibility increased significantly to 93.1% with 99.5% ethanol as the solvent. Additionally the enzymatic digestibility of mechanically pretreated corn stover was higher than that of non-pretreated corn stover by about 40%. Taken together, these results confirm the efficacy of using high-concentration ethanol as a solvent for organosolv pretreatment when done in conjunction with mechanical pretreatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号