首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  71篇
  2021年   1篇
  2016年   6篇
  2015年   6篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有71条查询结果,搜索用时 0 毫秒
31.
Ataxia‐telangiectasia (A‐T) is a genetic disorder caused by the lack of functional ATM kinase. A‐T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A‐T remains elusive. Here, we utilize human pluripotent stem cell‐derived cortical brain organoids to study A‐T neuropathology. Mechanistically, we show that the cGAS‐STING pathway is required for the recognition of micronuclei and induction of a senescence‐associated secretory phenotype (SASP) in A‐T olfactory neurosphere‐derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self‐DNA‐triggered SASP expression in A‐T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A‐T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A‐T and constitutes a novel therapeutic target for treating neuropathology in A‐T patients.  相似文献   
32.
The results of a serological survey of livestock in Kazakhstan, carried out in 1997–1998, are reported. Serum samples from 958 animals (cattle, sheep and goats) were tested for antibodies to foot and mouth disease (FMD), bluetongue (BT), epizootic haemorrhagic disease (EHD), rinderpest (RP) and peste des petits ruminants (PPR) viruses, and to Brucella spp. We also investigated the vaccination status of livestock and related this to changes in veterinary provision since independence in 1991. For the 2 diseases under official surveillance (FMD and brucellosis) our results were similar to official data, although we found significantly higher brucellosis levels in 2 districts and widespread ignorance about FMD vaccination status. The seroprevalence for BT virus was 23%, and seropositive animals were widespread suggesting endemicity, despite the disease not having being previously reported. We found a few seropositives for EHDV and PPRV, which may suggest that these diseases are also present in Kazakhstan. An hierarchical model showed that seroprevalence to FMD and BT viruses were clustered at the farm/village level, rather than at a larger spatial scale. This was unexpected for FMD, which is subject to vaccination policies which vary at the raion (county) level.  相似文献   
33.

Background  

Complex Regional Pain Syndrome type one (CRPS I) or formerly Reflex Sympathetic Dystrophy (RSD) is a disabling syndrome, in which a painful limb is accompanied by varying symptoms. Neuropathic pain is a prominent feature of CRPS I, and is often refractory to treatment. Since gabapentin is an anticonvulsant with a proven analgesic effect in various neuropathic pain syndromes, we sought to study the efficacy of the anticonvulsant gabapentin as treatment for pain in patients with CRPS I.  相似文献   
34.
35.
CD30 (TNFRSF8), a tumor necrosis factor receptor family protein, and CD30 variant (CD30v), a ligand-independent form encoding only the cytoplasmic signaling domain, are concurrently overexpressed in transformed human embryonic stem cells (hESCs) or hESCs cultured in the presence of ascorbate. CD30 and CD30v are believed to increase hESC survival and proliferation through NFκB activation, but how this occurs is largely unknown. Here we demonstrate that hESCs that endogenously express CD30v and hESCs that artificially overexpress CD30v exhibit increased ERK phosphorylation levels, activation of the canonical NFκB pathway, down-regulation of the noncanonical NFκB pathway, and reduced expression of the full-length CD30 protein. We further find that CD30v, surprisingly, resides predominantly in the nucleus of hESC. We demonstrate that alanine substitution of a single threonine residue at position 61 (T61) in CD30v abrogates CD30v-mediated NFκB activation, CD30v-mediated resistance to apoptosis, and CD30v-enhanced proliferation, as well as restores normal G2/M-checkpoint arrest upon H2O2 treatment while maintaining its unexpected subcellular distribution. Using an affinity purification strategy and LC-MS, we identified TRAF2 as the predominant protein that interacts with WT CD30v but not the T61A-mutant form in hESCs. The identification of Thr-61 as a critical residue for TRAF2 recruitment and canonical NFκB signaling by CD30v reveals the substantial contribution that this molecule makes to overall NFκB activity, cell cycle changes, and survival in hESCs.  相似文献   
36.
The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.  相似文献   
37.
We have studied the activity of acyl-CoA:dihydroxyacetonephosphate acyltransferase (DHAP-AT) in fibroblasts treated with low concentrations of digitonin so that the cytoplasmic compartment was freely accessible to the substrates of DHAP-AT while intracellular membranes remained intact. DHAP-AT activity exhibited 70% latency under these conditions. This latency could be overcome by addition of ATP, resulting in a four-fold stimulation of DHAP-AT activity. Virtually no stimulatory effect of ATP on DHAP-AT activity was observed in sonicated fibroblasts or when a non-hydrolyzable ATP analogue was used. Furthermore the stimulatory effect of ATP was prevented in part by DCCD. N-ethylmaleimide and high concentrations of oligomycin; bafilomycin had no effect. This pattern of inhibitor sensitivity is similar to that of the ATPase activity in peroxisomal fractions from rat liver. We conclude that peroxisomes in situ exhibit structure linked latency and that ATP is required for the transport of at least one of the substrates of DHAP-AT.  相似文献   
38.
The effect of small changes in intracellular ATP on autophagic flux was studied in isolated rat hepatocytes by using inhibitors of ATP production or by varying the metabolic conditions. The following observations were made. There was a linear relationship between endogenous protein degradation and intracellular ATP, the rate of proteolysis declining with decreasing ATP concentrations. 15% of the maximal proteolysis is either independent of ATP or has a very high affinity for this metabolite. There was a linear relationship between the autophagic sequestration of cytosolic [14C]sucrose and intracellular ATP, the sequestration rate decreasing with decreasing ATP concentrations. ATP depletion did not cause release of [14C]sucrose previously sequestered in autophagosomes and lysosomes at high ATP levels. Intracellular accumulation of chloroquine, used as an indicator of the pH inside lysosomes and other acidic cell compartments, diminished with decreasing cellular ATP content. Amino acids inhibited proteolysis without affecting ATP levels or chloroquine accumulation. We conclude from the high sensitivity of autophagy towards relatively small changes in the concentration of intracellular ATP that, besides amino acids, ATP is a very important factor in controlling the rate of autophagy in rat hepatocytes.  相似文献   
39.
Placenta has attracted increasing attention over the past decade as a stem cell source for regenerative medicine. In particular, the amniochorionic membrane has been shown to harbor populations of mesenchymal stromal cells (MSCs). In this study, we have characterized ex vivo expanded MSCs from the human amniotic (hAMSCs) and chorionic (hCMSCs) membranes of human full-term placentas and adult bone marrow (hBMSCs). Our results show that hAMSCs, hCMSCs, and hBMSCs express typical mesenchymal (CD73, CD90, CD105, CD44, CD146, CD166) and pluripotent (Oct-4, Sox2, Nanog, Lin28, and Klf4) markers but not hematopoietic markers (CD45, CD34). Ex vivo expanded hAMSCs were found to be of fetal origin, while hCMSCs cultures contained only maternal cells. Cell proliferation was significantly higher in hCMSCs, compared to hAMSCs and hBMSCs. Integrin profiling revealed marked differences in the expression of α subunits between the three cell sources. Cadherin receptors were consistently expressed on a subset of progenitors (ranging from 1% to 60%), while N-CAM (CD56) was only expressed in hAMSCs and hCMSCs but not in hBMSCs. When induced to differentiate, hAMSCs and hCMSCs displayed strong chondrogenic and osteogenic differentiation potential but very limited capacity for adipogenic conversion. In contrast, hBMSCs showed strong differentiation potential along the three lineages. These results illustrate how MSCs from different ontological sources display differential expression of cell-fate mediators and mesodermal differentiation capacity.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号