首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   29篇
  2022年   2篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   9篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
61.
Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.  相似文献   
62.
We have characterized the subunit composition of the chloroplast ATP synthase from Chlamydomonas reinhardtii by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF)1 and CF1.CF0 complexes. We could distinguish nine subunits in the enzyme, four of which were CF0 subunits. Further characterization of these subunits was undertaken by immunoblotting experiments, [14C]dicyclohexylcarbodiimide binding and analysis of their site of translation. In particular, we were able to show the presence of an as yet unidentified delta subunit in CF1 from C. reinhardtii. We have identified a 70-kDa peripheral membrane protein in the thylakoid membranes of C. reinhardtii, which is immunologically related to the beta subunit of CF1. We discuss its conceivable ATPase function with respect to the Ca2+-dependent ATPase activity previously reported in the thylakoid membranes from C. reinhardtii.  相似文献   
63.
The ultrastructure of the thylakoid membranes of Chlamydomonas reinhardtii was investigated using cell cultures grown under light intensities of 200 and 4000 lx, respectively. A significant difference in the size distribution of the exoplasmic fracture face (EF) particles appears upon Mg2+ treatment of broken cell preparations from the two light growth conditions. Particles larger than 150 Å are seen at 4000 lx only. However neither the absorption spectra of chlorophyll at 77 °K, nor the chlorophyll a/chlorophyll b ratios differ in the two cell batches. In addition, the polypeptide composition of the thylakoid membranes and the Mg2+ effect (spillover) on the photochemical rate of Photosystem II are the same in both conditions. We conclude that the partition coefficient between the two fracture faces of light-harvesting complex-containing particles is variable. It depends on Mg2+ ion concentration in the incubating medium of the membranes and on the light growth conditions of the cell cultures. Our results suggest that 60- to 80-Å protoplasmic fracture face (PF) particles containing the light-harvesting complexes can aggregate either in larger PF particles (100–120 Å) or in EF particles larger than 120 Å which also contain the Photosystem II centers. That some light-harvesting complexes are located on the PF faces is confirmed by the analysis of the BF4 mutant of C. reinhardtii lacking in chlorophyll-protein complex II. The PF faces of the BF4 thylakoids display a reduced number of particles as compared to that in the wild type.  相似文献   
64.
About 20% of the exoplasmic face (EF) particles present in the freeze-fractured thylakoid membranes of the wild type strain of Chlamydomonas reinhardtii remain in mutants lacking photosystem II (PSII) because of the absence of either one of the two PSII subcomplexes CP43 or D1/D2/CP47. We show that about half of these residual EF particles can be accounted for by PSII subcomplexes still present in such mutants, and by cytochrome (cyt) b6/f complexes. Analysis of double mutants lacking both types of protein complexes points to an association of cyt b6/f complexes with PSII subcomplexes in some of these EF particles and to a requirement in cyt b6/f complexes for the translocation of each of the two PSII subcomplexes (the CP43 subunit and the D1/D2/CP47 subcomplex) from the unstacked to the stacked regions of the thylakoid membranes.  相似文献   
65.
Thioredoxin, despite its function as an intracellular disulfide reducing enzyme and its lack of a signal sequence, has been found to play some roles extracellularly. Here we show that thioredoxin is actively secreted by a variety of normal and transformed cells, including fibroblasts, airway epithelial cells, and activated B and T lymphocytes. Neither brefeldin A nor dinitrophenol, two drugs that block transport through the exocytic pathway, inhibit secretion of thioredoxin, indicating that the latter does not follow the classical ER-Golgi route. The secretory mechanism for thioredoxin shares several features with the alternative pathway described for interleukin-1 beta, such as the potentiating effect on secretion of several unrelated drugs and the sensitivity to methylamine. However, unlike interleukin-1 beta, thioredoxin is not detected in membrane-bound compartments of secreting cells. In addition, when COS7 are transfected with plasmids encoding pro-interleukin-1 beta or thioredoxin, only the latter is detectable extracellularly.  相似文献   
66.
Cyanidium caldarium wild type and III-C mutant lacking phycobilisomes were compared with respect to the ultrastructural organization of particles on the freeze-fractured thylakoid membrane.  相似文献   
67.
BACKGROUND: The pole-to-pole distance of the metaphase spindle is reasonably constant in a given cell type; in the case of vertebrate female oocytes, this steady-state length can be maintained for substantial lengths of time, during which time microtubules remain highly dynamic. Although a number of molecular perturbations have been shown to influence spindle length, a global understanding of the factors that determine metaphase spindle length has not been achieved. RESULTS: Using the Drosophila S2 cell line, we depleted or overexpressed proteins that either generate sliding forces between spindle microtubules (Kinesin-5, Kinesin-14, dynein), promote microtubule polymerization (EB1, Mast/Orbit [CLASP], Minispindles [Dis1/XMAP215/TOG]) or depolymerization (Kinesin-8, Kinesin-13), or mediate sister-chromatid cohesion (Rad21) in order to explore how these forces influence spindle length. Using high-throughput automated microscopy and semiautomated image analyses of >4000 spindles, we found a reduction in spindle size after RNAi of microtubule-polymerizing factors or overexpression of Kinesin-8, whereas longer spindles resulted from the knockdown of Rad21, Kinesin-8, or Kinesin-13. In contrast, and differing from previous reports, bipolar spindle length is relatively insensitive to increases in motor-generated sliding forces. However, an ultrasensitive monopolar-to-bipolar transition in spindle architecture was observed at a critical concentration of the Kinesin-5 sliding motor. These observations could be explained by a quantitative model that proposes a coupling between microtubule depolymerization rates and microtubule sliding forces. CONCLUSIONS: By integrating extensive RNAi with high-throughput image-processing methodology and mathematical modeling, we reach to a conclusion that metaphase spindle length is sensitive to alterations in microtubule dynamics and sister-chromatid cohesion, but robust against alterations of microtubule sliding force.  相似文献   
68.
69.
The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (C onserved in P lant L ineage and D iatoms49 ) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6f complex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6f complex. Based on motifs of CPLD49 and the activities of other CPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f.  相似文献   
70.
Thirty clones derived from twenty isolates of heterotrophic nanoflagellates originating from a variety of marine and freshwater environments were examined by restriction fragment length polymorphism analysis of small subunit ribosomal RNA genes amplified by the polymerase chain reaction (riboprinting). The data were compared with light and electron microscopical identification of the isolates. On morphological criteria, sixteen of the thirty clones belonged to the genus Paraphysomonas De Saedeleer, seven to the genus Spumella Cienkowski, four to the genus Pteridomonas Penard and three to the genus Cafeteria Fenchel and Patterson. Among these taxa, eleven ribotypes were detected by analysis with the restriction enzymes Hinf I, Hae III, Sau3A I, and Msp I. Differentiation of nanoflagellate taxa by the riboprinting method supported taxonomic classification based on morphology at the generic and species level. The utility of the method for discriminating the 'naked' flagellates and for confirming the identity of polymorphic forms among species of Paraphysomonas is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号