首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5552篇
  免费   528篇
  国内免费   5篇
  6085篇
  2023年   32篇
  2022年   63篇
  2021年   144篇
  2020年   87篇
  2019年   108篇
  2018年   148篇
  2017年   119篇
  2016年   212篇
  2015年   292篇
  2014年   342篇
  2013年   372篇
  2012年   513篇
  2011年   508篇
  2010年   299篇
  2009年   263篇
  2008年   363篇
  2007年   358篇
  2006年   326篇
  2005年   258篇
  2004年   277篇
  2003年   217篇
  2002年   238篇
  2001年   58篇
  2000年   51篇
  1999年   46篇
  1998年   63篇
  1997年   37篇
  1996年   31篇
  1995年   30篇
  1994年   23篇
  1993年   17篇
  1992年   24篇
  1991年   19篇
  1990年   19篇
  1989年   15篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   16篇
  1983年   5篇
  1982年   11篇
  1981年   10篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1971年   4篇
排序方式: 共有6085条查询结果,搜索用时 15 毫秒
111.
Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees'' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.  相似文献   
112.
113.

Aim

20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI).

Methods

Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry.

Results

Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice.

Conclusion

These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up-regulation of 20-HETE formation in sEH-KO-mice.  相似文献   
114.
BackgroundSubjects at risk for major mood disorders have a higher risk to develop autoimmune thyroid disease (AITD) and vice-versa, implying a shared pathogenesis. In mood disorder patients, an abnormal profile of hematopoietic/neuronal growth factors is observed, suggesting that growth/differentiation abnormalities of these cell lineages may predispose to mood disorders. The first objective of our study was to investigate whether an aberrant profile of these hematopoietic/neuronal growth factors is also detectable in subjects at risk for AITD. A second objective was to study the inter relationship of these factors with previously determined and published growth factors/cytokines in the same subjects.MethodsWe studied 64 TPO-Ab-negative females with at least 1 first- or second-degree relative with AITD, 32 of whom did and 32 who did not seroconvert to TPO-Ab positivity in 5-year follow-up. Subjects were compared with 32 healthy controls (HCs). We measured serum levels of brain-derived neurotrophic factor (BDNF), Stem Cell Factor (SCF), Insulin-like Growth Factor-Binding Protein 2 (IGFBP-2), Epidermal Growth Factor (EGF) and IL-7 at baseline.ResultsBDNF was significantly lower (8.2 vs 18.9 ng/ml, P<0.001), while EGF (506.9 vs 307.6 pg/ml, P = 0.003) and IGFBP-2 (388.3 vs 188.5 ng/ml, P = 0.028) were significantly higher in relatives than in HCs. Relatives who seroconverted in the next 5 years had significantly higher levels of SCF than non-seroconverters (26.5 vs 16.7 pg/ml, P = 0.017). In a cluster analysis with the previously published growth factors/cytokines SCF clustered together with IL-1β, IL-6 and CCL-3, of which high levels also preceded seroconversion.ConclusionRelatives of AITD patients show aberrant serum levels of 4 hematopoietic/neuronal growth factors similar to the aberrancies found in mood disorder patients, suggesting that shared growth and differentiation defects in both the hematopoietic and neuronal system may underlie thyroid autoimmunity and mood disorders. A distinct pattern of four inter correlating immune factors in the relatives preceded TPO-Ab seroconversion in the next 5 years.  相似文献   
115.
The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy.  相似文献   
116.
In stochastic environments, a change in a demographic parameter can influence the population growth rate directly or via a resulting impact on age structure. Stochastic elasticity of the long‐run stochastic growth rate λs to a demographic parameter offers a suitable way to measure the overall demographic response because it includes both the direct effect of changing the demographic parameter and its indirect effect through changes in the age structure. From 25 mammalian populations with contrasting life histories, we investigated how pace of life and population growth rate influence the demographic responses (measured as the relative contributions of the direct and indirect components of stochastic elasticity on λs). We found that in short‐lived species, the change in population structure resulting from an increase in yearling survival leads to an additional increase in λs, whereas in long‐lived species, the same change in population structure leads to a decrease. Short‐lived species thus display a boom‐bust life history strategy contrary to long‐lived species, for which the long lifespan dampens the demographic consequences of changing age structure. Irrespective of the species’ life history strategy, the change in population age structure resulting from an increase in adult survival leads to an additional increase in λs due to an increase of the proportion of mature individuals in the population. On the contrary, a change in population age structure resulting from an increase of reproductive performance leads to a decrease in λs that is due to the increase of the proportion of immature individuals in the population. Our comparative analysis of stochastic elasticity patterns in mammals shows the existence of different demographic responses to changes in age structure between short‐ and long‐lived species, which improves our understanding of population dynamics in variable environments in relation to the species‐specific pace of life.  相似文献   
117.
118.
Dissolved organic carbon (DOC) plays a key role in the peatland carbon balance and serves numerous ecological and chemical functions including acting as a microbial substrate. In this study, we quantify the concentration, biodegradability, and intrinsic properties of DOC obtained from peat, fresh material, and litter from nine species of ombrotrophic bog vegetation. Potential biodegradability was assessed by incubating vegetation extracts for 28 days in the dark and measuring percent DOC loss as the fraction of biodegradable DOC (%BDOC) while DOC properties were characterized using UV–Vis absorbance and fluorescence measurements. The mean initial DOC concentration extracted differed significantly among species (P < 0.05) and was significantly higher in fresh material, 217 ± 259 mg DOC l?1, than either litter or peat extracts with mean concentrations of 82.1 ± 117 mg DOC l?1 and 12.7 ± 1.0 mg DOC l?1, respectively (P < 0.05). %BDOC also differed significantly among species (P < 0.05) and ranged from 52 to 73% in fresh cuttings with the greatest fraction observed in S. magellanicum; 22–46% in litter; and 24% in peat. The majority of variability (82.5%) in BDOC was explained by initial absorbance at 254 nm and total dissolved nitrogen concentration which was further resolved into significant non-linear relationships between %BDOC and both humic-like and protein-like DOC fractions (P < 0.05). Our results highlight the extremely heterogeneous nature of the surface vegetation-derived DOC input in peatlands and stress the importance of vegetation species in peatland ecosystem function.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号