首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   78篇
  2021年   7篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   20篇
  2015年   28篇
  2014年   45篇
  2013年   81篇
  2012年   97篇
  2011年   81篇
  2010年   57篇
  2009年   61篇
  2008年   78篇
  2007年   79篇
  2006年   72篇
  2005年   74篇
  2004年   76篇
  2003年   74篇
  2002年   82篇
  2001年   8篇
  2000年   12篇
  1999年   18篇
  1998年   25篇
  1997年   15篇
  1996年   19篇
  1995年   14篇
  1994年   15篇
  1993年   13篇
  1992年   18篇
  1990年   11篇
  1989年   6篇
  1988年   7篇
  1987年   10篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1982年   10篇
  1981年   7篇
  1980年   11篇
  1978年   6篇
  1977年   7篇
  1976年   4篇
  1975年   8篇
  1974年   5篇
  1972年   5篇
  1971年   4篇
  1968年   4篇
  1963年   5篇
  1962年   4篇
排序方式: 共有1385条查询结果,搜索用时 15 毫秒
221.
Membrane protein insertion and folding was studied for the major outer membrane protein of Fusobacterium nucleatum (FomA), which is a voltage-dependent general diffusion porin. The transmembrane domain of FomA forms a beta-barrel that is predicted to consist of 14 beta-strands. Here, unfolded FomA is shown to insert and fold spontaneously and quantitatively into phospholipid bilayers upon dilution of the denaturant urea, which was shown previously only for outer membrane protein A (OmpA) of Escherichia coli. Folding of FomA is demonstrated by circular dichroism and fluorescence spectroscopy, by SDS-polyacrylamide gel electrophoresis, and by single-channel recordings. Refolded FomA had a single-channel conductance of 1.1 nS at 1 M KCl, in agreement with the conductance of FomA isolated from membranes in native form. In contrast to OmpA, which forms a smaller eight-stranded beta-barrel domain, folding kinetics of the larger FomA were slower and provided evidence for parallel folding pathways of FomA into lipid bilayers. Two pathways were observed independent of membrane thickness with two different lipid bilayers, which were either composed of dicapryl phosphatidylcholine or dioleoyl phosphatidylcholine. This is the first observation of parallel membrane insertion and folding pathways of a beta-barrel membrane protein from an unfolded state in urea into lipid bilayers. The kinetics of both folding pathways depended on the chain length of the lipid and on temperature with estimated activation energies of 19 kJ/mol (dicapryl phosphatidylcholine) and 70 kJ/mol (dioleoyl phosphatidylcholine) for the faster pathways.  相似文献   
222.
The iron-sulfur cluster-free hydrogenase (Hmd) from methanogenic archaea harbors an iron-containing cofactor of yet unknown structure. X-ray absorption spectroscopy of the active, as isolated enzyme from Methanothermobacter marburgensis (mHmd) and of the active, reconstituted enzyme from Methanocaldococcus jannaschii (jHmd) revealed the presence of mononuclear iron with two CO, one sulfur and one or two N/O in coordination distance. In jHmd, the single sulfur ligand is most probably provided by Cys176, as deduced from a comparison of the activity and of the x-ray absorption and M?ssbauer spectra of the enzyme mutated in any of the three conserved cysteines. In the isolated Hmd cofactor, two CO, one sulfur, and two nitrogen/oxygen atoms coordinate the iron, the sulfur ligand being most probably provided by mercaptoethanol, which is absolutely required for the extraction of the iron-containing cofactor from the holoenzyme and for the stabilization of the extracted cofactor. In active mHmd holoenzyme, the number of iron ligands increased by one when one of the Hmd inhibitors (CO or KCN) were present, indicating that in active Hmd, the iron contains an open coordination site, which is proposed to be the site of H2 interaction.  相似文献   
223.
The male-specific regions of the Y chromosome (MSY) of the human and the chimpanzee (Pan troglodytes) are fully sequenced. The most striking difference is the dramatic rearrangement of large parts of their respective MSYs. These non-recombining regions include ampliconic gene families that are known to be important for male reproduction,and are consequently under significant selective pressure. However, whether the published Y-chromosomal pattern of ampliconic fertility genes is invariable within P. troglodytes is an open but fundamental question pertinent to discussions of the evolutionary fate of the Y chromosome in different primate mating systems. To solve this question we applied fluorescence in situ hybridisation (FISH) of testis-specific expressed ampliconic fertility genes to metaphase Y chromosomes of 17 chimpanzees derived from 11 wild-born males and 16 bonobos representing seven wild-born males. We show that of eleven P. troglodytes Y-chromosomal lines, ten Y-chromosomal variants were detected based on the number and arrangement of the ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y)—a so-far never-described variation of a species'' Y chromosome. In marked contrast, no variation was evident among seven Y-chromosomal lines of the bonobo, P. paniscus, the chimpanzee''s closest living relative. Although, loss of variation of the Y chromosome in the bonobo by a founder effect or genetic drift cannot be excluded, these contrasting patterns might be explained in the context of the species'' markedly different social and mating behaviour. In chimpanzees, multiple males copulate with a receptive female during a short period of visible anogenital swelling, and this may place significant selection on fertility genes. In bonobos, however, female mate choice may make sperm competition redundant (leading to monomorphism of fertility genes), since ovulation in this species is concealed by the prolonged anogenital swelling, and because female bonobos can occupy high-ranking positions in the group and are thus able to determine mate choice more freely.  相似文献   
224.

Background

Recent studies demonstrated an association of STAT4 variants with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), indicating that multiple autoimmune diseases share common susceptibility genes. We therefore investigated the influence of STAT4 variants on the susceptibility and phenotype of inflammatory bowel diseases (IBD) in a large patient and control cohort.

Methodology/Principal Findings

Genomic DNA from 2704 individuals of Caucasian origin including 857 patients with Crohn''s disease (CD), 464 patients with ulcerative colitis (UC), and 1383 healthy, unrelated controls was analyzed for seven SNPs in the STAT4 gene (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694, rs10174238). In addition, a detailed genotype-phenotype analysis was performed. Our analysis revealed an association of the STAT4 SNP rs7574865 with overall decreased susceptibility to CD (p = 0.047, OR 0.86 [95% CI 0.74–0.99]). However, compared to CD patients carrying the wild type genotype, the STAT4 SNP rs7574865 was significantly associated with early CD onset (p = 0.021) and colonic CD (p = 0.008; OR = 4.60, 95% CI 1.63–12.96). For two other STAT4 variants, there was a trend towards protection against CD susceptibility (rs7568275, p = 0.058, OR 0.86 [95% CI 0.74–1.00]; rs10174238, p = 0.057, OR 0.86 [95% CI 0.75–1.00]). In contrast, we did not observe any association with UC susceptibility. Evidence for weak gene-gene interaction of STAT4 with the IL23R SNP rs11209026 was lost after Bonferroni correction.

Conclusions/Significance

Our results identified the STAT4 SNP rs7574865 as a disease-modifying gene variant in colonic CD. However, in contrast to SLE and RA, the effect of rs7574865 on CD susceptibility is only weak.  相似文献   
225.
The dimeric OspC/Vsp family surface lipoproteins of Borrelia spirochetes are crucial to the transmission and persistence of Lyme borreliosis and tick-borne relapsing fever. However, the requirements for their proper surface display remained undefined. In previous studies, we showed that localization of Borrelia burgdorferi monomeric surface lipoprotein OspA was dependent on residues in the N-terminal "tether" peptide. Here, site-directed mutagenesis of the B. burgdorferi OspC tether revealed two distinct regions affecting either release from the inner membrane or translocation through the outer membrane. Determinants of both of these steps appear consolidated within a single region of the Borrelia turicatae Vsp1 tether. Periplasmic OspC mutants still were able to form dimers. Their localization defect could be rescued by the addition of an apparently structure-destabilizing C-terminal epitope tag but not by coexpression with wild-type OspC. Furthermore, disruption of intermolecular Vsp1 salt bridges blocked dimerization but not surface localization of the resulting Vsp1 monomers. Together, these results suggest that Borrelia OspC/Vsp1 surface lipoproteins traverse the periplasm and the outer membrane as unfolded monomeric intermediates and assemble into their functional multimeric folds only upon reaching the spirochetal surface.  相似文献   
226.
We used a surface trypsinolysis assay to probe accessibility of the membrane-proximal N-terminal tether peptides of Borrelia surface lipoproteins OspA and Vsp1. Our findings with both wild-type and mutant proteins are only compatible with the anchoring of these surface lipoproteins in the outer leaflet of the outer spirochetal membrane.  相似文献   
227.
Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.  相似文献   
228.
229.
Osteoporotic vertebral fractures constitute a major clinical problem in ageing societies. A third of all vertebral fractures is caused by falls, 15% by lifting heavy loads or traffic accidents and over 50% are not relatable to a traumatic event. In the latter case vertebrae show sinter processes which indicate the accumulation of damage and permanent deformation. Accumulated damage may not be visible on radiographs but increases the risk of fracture and could lead to vertebral collapse. Clear understanding of the accumulation of damage and residual strains and their dependence on loading mode and direction is important for understanding vertebral fractures. Altogether, 251 cylindrical samples (8×18-25mm) were obtained from 50 male and 54 female fresh frozen human vertebrae (T1-L3) of 65 (21-94) years. Vertebrae were randomly assigned to three groups cranial-caudal, anterior-posterior and latero-lateral. Specimens were mechanically loaded in compression, tension or torsion in five load steps at a strain rate of 0.2%/s. Three conditioning cycles were driven per load step. Stress-strain curves were reconstructed from the force-displacement or from the moment-twist angle curves. Damage accumulated from 0 to 86% in compression, from 0 to 76% in tension and from 0 to 86% in torsion through the five load steps. Residual strains accumulated from 0 to -0.008mm/mm in compression, 0 to 0.006mm/mm in tension and 0 to 0.026rad/rad in torsion. Significantly less damage (p<0.05) but not residual strains accumulated in transverse directions. This study provides detailed experimental insights into the damage behaviour of vertebral trabecular bone under various loads occurring in vivo. Damage but not residual strain evolution seems to be anisotropic. Both seem to evolve differently under different loading modes. The results could be of importance in understanding vertebral fractures.  相似文献   
230.
The zebrafish is a potentially important and cost-effective model for studies of development, motility, regeneration, and inherited human diseases. The object of our work was to show whether myofibrils isolated from zebrafish striated muscle represent a valid subcellular contractile model. These organelles, which determine contractile function in muscle, were used in a fast kinetic mechanical technique based on an atomic force probe and video microscopy. Mechanical variables measured included rate constants of force development (k(ACT)) after Ca(2+) activation and of force decay (τ(REL)(-1)) during relaxation upon Ca(2+) removal, isometric force at maximal (F(max)) or partial Ca(2+) activations, and force response to an external stretch applied to the relaxed myofibril (F(pass)). Myotomal myofibrils from larvae developed greater active and passive forces, and contracted and relaxed faster than skeletal myofibrils from adult zebrafish, indicating developmental changes in the contractile organelles of the myotomal muscles. Compared with murine cardiac myofibrils, measurements of adult zebrafish ventricular myofibrils show that k(ACT), F(max), Ca(2+) sensitivity of the force, and F(pass) were comparable and τ(REL)(-1) was smaller. These results suggest that cardiac myofibrils from zebrafish, like those from mice, are suitable contractile models to study cardiac function at the sarcomeric level. The results prove the practicability and usefulness of mechanical and kinetic investigations on myofibrils isolated from larval and adult zebrafish muscles. This novel approach for investigating myotomal and myocardial function in zebrafish at the subcellular level, combined with the powerful genetic manipulations that are possible in the zebrafish, will allow the investigation of the functional primary consequences of human disease-related mutations in sarcomeric proteins in the zebrafish model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号