首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14792篇
  免费   1276篇
  国内免费   2篇
  2021年   181篇
  2020年   114篇
  2019年   135篇
  2018年   178篇
  2017年   160篇
  2016年   288篇
  2015年   447篇
  2014年   554篇
  2013年   734篇
  2012年   879篇
  2011年   827篇
  2010年   583篇
  2009年   509篇
  2008年   701篇
  2007年   764篇
  2006年   698篇
  2005年   721篇
  2004年   690篇
  2003年   650篇
  2002年   656篇
  2001年   306篇
  2000年   277篇
  1999年   277篇
  1998年   235篇
  1997年   174篇
  1996年   169篇
  1995年   184篇
  1994年   184篇
  1993年   162篇
  1992年   216篇
  1991年   182篇
  1990年   192篇
  1989年   189篇
  1988年   162篇
  1987年   165篇
  1986年   162篇
  1985年   140篇
  1984年   138篇
  1983年   134篇
  1982年   131篇
  1981年   128篇
  1980年   95篇
  1979年   121篇
  1978年   118篇
  1977年   96篇
  1976年   98篇
  1975年   102篇
  1974年   107篇
  1973年   77篇
  1968年   69篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Axonal shortening and the mechanisms of axonal motility   总被引:1,自引:0,他引:1  
Axons in tissue culture retract and shorten if their tips are detached from the substrate. The shortening reaction of the axon involves contractile forces that also arise during normal axonal motility, elongation, and retraction. We studied shortening in axonal segments isolated from their parent axons by transecting the axon between the growth cone and the most distal point of adhesion to the substrate. Within 15-20 minutes after transection, an isolated axonal segment shortened and pulled its tail end toward the growth cone. During the shortening process, long sinusoidal bends arose along the axon. The identical shortening reaction occurs without transection, when the axon tip is detached from the substrate. Pharmacological studies with inhibitors of glycolysis indicate that the shortening mechanisms utilize metabolic energy, presumably ATP. The rate of sinusoidal shortening is similar to both the rate of polymer translocation in the axon by slow axonal transport and the rate of normal axonal elongation. Taxol inhibits the shortening reaction with a similar dose dependence to its inhibition of axonal growth. Together, all these observations suggest that the same basic intracellular motility mechanisms are involved in normal axonal growth, in slow axonal transport, and in the shortening reaction: the intracellular dynamic system that utilizes ATP to generate longitudinal movements of polymers within the axon may be the same mechanism underlying both the retraction and the elongation of the axon.  相似文献   
112.
Most uredospores of rust fungi develop infection structures in a typical pattern so that they can infect the host plant. The function of these infection structures is divided into the following three phases:
  • 1 In the recognition phase, the germ tube recognizes the cuticle and the stoma. This process may occur independently from the host plant since copies of the cuticle induce similar reactions of the fungus. During fungal growth on the epidermis, unspecific stress responses of the plant are triggered.
  • 2 In the signal phase, the fungal substomatal vesicle and infection hypha(e) contact the host cells within the leaf parenchyma. A signal from the host induces further development of the fungus. Haustorium mother cell differentiation is effected and haustorium formation is initiated. At the same time, the fungus suppresses the synthesis of stress metabolites by the plant.
  • 3 In the parasitic phase, the fungus penetrates the host cell and complex interactions between host and parasite begin. A highly specialized interface around the haustorium develops presumably in order to allow a more efficient nutrient transfer from host to parasite. Eventual defence reactions of the plant, generally on the race-cultivar level, fail to be evoked or are suppressed in compatible combinations.
  相似文献   
113.
Summary The ability to convertd-xylose to xylitol was screened in 44 yeasts from five genera. All but two of the strains produced some xylitol with varying rates and yields. The best xylitol producers were localized largely in the speciesCandida guilliermondii andC. tropicalis. Factors affecting xylitol production by a selectedC. guilliermondii strain, FTI-20037, were investigated. The results showed that xylitol yield by this strain was affected by the nitrogen source. Yield was highest at 30–35°C, and could be increased with decreasing aeration rate. Using high cell density and a defined medium under aerobic conditions, xylitol yield byC. guilliermondii FTI-20037 from 104 g/ld-xylose was found to be 77.2 g/l. This represented a yield of 81% of the theoretical value, which was computed to be 0.9 mol xylitol per mold-xylose.Issued as NRCC publication No. 28798.  相似文献   
114.
115.
It is known that quinuclidinyl benzilate (QNB) binds specifically and with high affinity to the cholinergic muscarinic receptor and that behaves as a potent antagonist of this receptor.

We have analysed -[3H]QNB binding to rat CNS membranes after the administration of the convulsant 3-mercaptopropionic acid (MP) (150 mg·kg−1, i.p.). The studies were done in rats killed at two stages: during and after seizures. No changes in [3H]QNB binding to hippocampus and cerebral cortex membranes were found. [3H]QNB binding increased about 40 and 80% in striatum and cerebellum membranes, respectively. The changes were observed both in seizure and postseizures states. The study was extended to the assay of [3H]QNB binding kinetic constants in the anatomical areas modified by the convulsant. The analysis of the saturation curves indicated an increase in the binding affinity but no change in the number of binding sites. Hill number values were near the unit suggesting a non-cooperative interaction between the ligand and the receptor, and the labelling of a homogeneous population of receptor sites.

The results suggest the participation of some cholinergic pathways in the development and maintenance of MP-induced seizures.  相似文献   

116.
Summary The postembryonic development of the morphology and anatomy of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger is described. All the receptor cells are present in the subgenual organ, the intermediate organ and the crista acustica in the 1st larval instar. Generally, even in the 1st instar, the arrangement of the scolopidia in the three organs resembles the adult structure. The acoustic trachea, the tympana, the tympanal covers and the acoustic spiracle develop step by step in subsequent instars. The acoustic trachea resembles the adult structure for the first time in the 4th instar, although its volume is still small. The auditory threshold curves recorded from the tympanal nerve in instars 4, 5 and 6 show the same frequency maxima as those in the adult. The overall sensitivity significantly increases after the final moult. The dimensions of structures that lie within the crista acustica and that are probably involved in stimulus transduction and in frequency tuning have been analysed. The dorsal wall of the anterior trachea, the tectorial membrane and the cap cells have similar dimensions, especially in the last three instars and in adults.  相似文献   
117.
Of the five human alcohol dehydrogenase (ADH) genes located in the region q21–25 of chromosome 4, genetic markers have been reported previously only for class I enzymes, ADH1-3. Here, new restriction fragment length polymorphisms (RFLPs) are described for the genes of two other classes, ADH4 () and ADH5 ( or formaldehyde dehydrogenase, FDH). The frequencies and modes of inheritance of these RFLPs were determined with DNA both from unrelated individuals and from families. A polymorphic PstI site is assigned to the fourth intron of the ADH4 gene. Pairwise linkage disequilibrium calculations for these new RFLPs and already known RFLPs at the ADH2 and ADH3 loci establish strong linkage disequilibria between polymorphic MspI and BstXI sites in the ADH5 gene as well as between XbaI and MspI sites in the ADH3 gene. Furthermore, linkage disequilibria were detected between RFLPs of the ADH2 and ADH3 genes as well as between those of the ADH4 and ADH5 genes. The latter disequilibrium implies a hitherto unknown physical proximity of two genes belonging to different ADH classes. The RFLPs were used to construct chromosomal haplotypes that include three ADH classes. Of the 16 possible haplotypes for four RFLP markers used here, 10 were experimentally detected. The potential application of the ADH RFLPs and haplotypes in linkage or association studies of inherited diseases such as familial alcoholism is discussed.  相似文献   
118.
Synopsis The Aufwuchs-eating cichlids of Lake Tanganyika show clear trophic differences that are correlated to their morphology, physiology and foraging behaviour. The species are grouped into three categories of relative intestinal length according to their feeding habits. A correlation between the intestinal length and the diet could be demonstrated, ranging from around 2.5 for species ingesting more animal food, to 7.8 for detritivorous and microalgivorous species. The relative intestinal length of domesticTropheus moorii, raised in aquaria was significantly lower than that of wild individuals by a factor of 1.7, demonstrating a wide range of phenotypic adaptability. The activities of trypsin and amylase were at an equal level in four Aufwuchseating species, but the activity of laminarinase of a detritivorous-microalgivorous species (Petrochromis orthognathus) was 2.6 times higher than that of an algivorous species (Tropheus moorii). The laminarinase seems to be an excellent marker enzyme for detritivorous or microalgivorous feeding.  相似文献   
119.
Single molecules perform a variety of tasks in cells, from replicating, controlling and translating the genetic material to sensing the outside environment. These operations all require that specific actions take place. In a sense, each molecule must make tiny decisions. To make a decision, each "molecular machine" must dissipate an energy Py in the presence of thermal noise Ny. The number of binary decisions that can be made by a machine which has dspace independently moving parts is the "machine capacity" Cy = dspace log2 [(Py + Ny)/Ny]. This formula is closely related to Shannon's channel capacity for communications systems, C = W log2 [(P + N)/N]. This paper shows that the minimum amount of energy that a molecular machine must dissipate in order to gain one bit of information is epsilon min = kB T ln (2) joules/bit. This equation is derived in two distinct ways. The first derivation begins with the Second Law of Thermodynamics, which shows that the statement that there is a minimum energy dissipation is a restatement of the Second Law of Thermodynamics. The second derivation begins with the machine capacity formula, which shows that the machine capacity is also related to the Second Law of Thermodynamics. One of Shannon's theorems for communications channels is that as long as the channel capacity is not exceeded, the error rate may be made as small as desired by a sufficiently involved coding. This result also applies to the dissipation formula for molecular machines. So there is a precise upper bound on the number of choices a molecular machine can make for a given amount of energy loss. This result will be important for the design and construction of molecular computers.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号