首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1500篇
  免费   169篇
  1669篇
  2019年   16篇
  2016年   28篇
  2015年   45篇
  2014年   37篇
  2013年   43篇
  2012年   61篇
  2011年   38篇
  2010年   43篇
  2009年   38篇
  2008年   49篇
  2007年   49篇
  2006年   60篇
  2005年   48篇
  2004年   39篇
  2003年   44篇
  2002年   47篇
  2001年   33篇
  2000年   38篇
  1999年   34篇
  1998年   33篇
  1997年   17篇
  1996年   23篇
  1995年   16篇
  1992年   40篇
  1991年   39篇
  1990年   30篇
  1989年   25篇
  1988年   36篇
  1987年   31篇
  1986年   25篇
  1985年   31篇
  1984年   14篇
  1983年   20篇
  1982年   21篇
  1981年   19篇
  1980年   19篇
  1979年   21篇
  1978年   24篇
  1977年   20篇
  1976年   15篇
  1975年   20篇
  1974年   31篇
  1973年   27篇
  1972年   28篇
  1971年   17篇
  1970年   19篇
  1969年   18篇
  1968年   24篇
  1967年   19篇
  1966年   19篇
排序方式: 共有1669条查询结果,搜索用时 0 毫秒
81.
The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel–binding toxins and potassium channel–binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.  相似文献   
82.
Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA repair. Our data show that inactivating mutations in CK1δ impair SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.  相似文献   
83.
Strains of E. coli B/r transformed with the plasmid pSK760 were found to be sensitized to inactivation by ultraviolet radiation (UV) and to have elevated levels of RNase H activity. Strains transformed with the carrier vector pBR322 or the plasmid pSK762C derived from pSK760 but with an inactivated rnh gene were not sensitized. UV-inactivation data for strains having known defects in DNA repair and transformed with pSK760 suggested an interference by RNase H of postreplication repair: uvrA cells were strongly sensitized, wild-type and uvrA recF cells were moderately sensitized and recA cells were not sensitized; and minimal medium recovery was no longer apparent in sensitized uvrA cells. Biochemical studies showed that post-UV DNA synthesis was sensitized and that the smaller amounts of DNA synthesized after irradiation, while of normal reduced size as indicated by sedimentation position in alkaline sucrose gradients, did not shift to a larger size (more rapidly sedimenting) upon additional incubation. We suggest an excess level of RNase H interferes with reinitiation of DNA synthesis on damaged templates to disturb the normal pattern of daughter strand gaps and thereby to inhibit postreplication repair.  相似文献   
84.
Membrane glycoproteins involved in neurite fasciculation   总被引:11,自引:32,他引:11       下载免费PDF全文
Lectin affinity chromatography combined with mAb production was used to identify chick neural cell surface molecules related to L1 antigen, a mouse neural glycoprotein implicated in cell-cell adhesion (Rathjen, F. G., and M. Schachner, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1-10). A glycoprotein, G4 antigen, isolated by mAb G4 from adult chick brain is described which comprises a major 135-kD component, a minor doublet at 190 kD, and diffusely migrating bands at 80 and 65 kD in SDS PAGE. This molecule is structurally related to mouse L1 antigen according to NH2-terminal amino acid sequence (50% identity) as well as the behavior of its components in two-dimensional IEF/SDS PAGE gels. A second chicken glycoprotein, F11 antigen, was isolated from adult chick brain using mAb F11. This protein has also a major 135-kD component and minor components at 170 kD and 120 kD. Both immunotransfer analysis with polyclonal antibodies to mAb G4 and to mAb F11 isolate and the behavior on IEF/SDS PAGE gels indicates that the major 135-kD component of F11 antigen is distinct from G4 antigen components. However, the 135-kD component of F11 antigen shares with G4 antigen and the neural cell adhesion molecule (NCAM) the HNK-1/L2 carbohydrate epitope. In immunofluorescence studies, G4 and F11 antigenic sites were found to be associated mainly with the surface of process-bearing cells, particularly in fiber-rich regions of embryonic brain. Although Fab fragments of polyclonal antibodies to mAbs G4 or F11 immunoaffinity isolate only weakly inhibit the Ca2+-independent aggregation of neural cells, they strongly inhibit fasciculation of retinal axons. Together these studies extend the evidence that bundling of axons reflects the combined effects of a group of distinct cell surface glycoproteins.  相似文献   
85.
Polypeptide components and carbohydrate linkage types of F11 antigen and G4 antigen, two chick cell-surface glycoproteins implicated in neurite fasciculation and elongation [Rathjen, F.G., Wolff, J.M., Bonhoeffer, F. and Rutishauser, U. (1987) J. Cell Biol. 104, 343-353], have been studied in comparison to mouse L1 antigen. Tryptic fingerprint analysis does not reveal any relation of the 130-kDa components of G4 or F11 antigens to each other or to neural cell-adhesion molecules. The 180/190-kDa component of G4 antigen comprises parts of the 130-kDa and 80/65-kDa components and shares a sequence corresponding to the amino terminus of the G4 130-kDa component as shown serologically with anti-peptide sera. This closely parallels the relationship found for mouse L1 antigen components. In contrast, the F11 170-kDa component is different from the F11 130-kDa component, as shown serologically and by fingerprint analysis. A combination of chemical and enzymatic deglycosylation methods reveals that while O-glycosylation cannot be detected F11 130-kDa, G4 130-kDa and L1 140-kDa components contain N-linked carbohydrates. Endoglycosidase H treatment shows that the oligosaccharides present in the G4 130-kDa component and mouse L1 are mostly of the complex type, while the F11 130-kDa component consists of two populations, one containing mainly complex-type carbohydrates and a second containing high-mannose/hybrid-type carbohydrates.  相似文献   
86.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been identified in homogenates of C-6 glial tumor cells. The Ca2+-dependent phosphodiesterase was resolved by ECTEOLA-cellulose chromatography into two fractions. One fraction contained a protein regulator of the enzyme which was identical to a homogeneous Ca2+-binding protein (CDR) from porcine brain by the criteria of electrophoretic migration, biological activity, heat stability, and behavior in diverse chromatographic systems. The second fraction contained deactivated enzyme (CDR-dependent phosphodiesterase) which regained full activity upon the readdition of both Ca2+ and CDR. In subcellular fractionation experiments both the CDR and the Ca2+-dependent phosphodiesterase were predominantly located in the 100,000g supernatant fraction.The apparent Km values of the phosphodiesterase for cyclic AMP (cAMP) and cyclic GMP (cGMP) were 10 and 1.2 μm, respectively, when CDR was not rate limiting. Minor increases in the apparent Km for cAMP were observed at rate-limiting concentrations of CDR. At the ratio of CDR to CDR-dependent enzyme present in the C-6 cell homogenate, half-maximal activation was conferred by 4 μm Ca2+ for the hydrolysis of 25 μm cGMP and by 8 μm Ca2+ for the hydrolysis of 25 μm cAMP. Increased ratios of CDR to CDR-dependent phosphodiesterase increased the sensitivity of the enzyme to Ca2+. The enzyme was more sensitive to CDR with cGMP as substrate than with cAMP, and more sensitive at high than at low cyclic nucleotide substrate concentrations. The quantity of enzyme in the assay also influenced the amount of CDR required for half-maximal activation.  相似文献   
87.
Foam disruption by agitation—the stirring as foam disruption (SAFD) technique—was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD—foam entrainment—was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. Electronic Publication  相似文献   
88.
Sea trout are the sea-going migratory form of the freshwater brown trout (Salmo trutta L.) and since 1989 there have been marked declines in their stocks on the west coasts both of Scotland and Ireland. Various factors have been attributed as possible causal agents in these stock declines, including fresh water acidification, overfishing, climatic fluctuations, habitat degradation and sea lice parasitic burdens. The putative impact of infestations of sea trout by the ectoparasitic copepod sea louse, Lepeophtheirus salmonis (Krøyer), has featured prominently in the controversy, especially with regard to the role of inshore commercial salmon farms as a possible source of infestation of wild salmonids by sea lice. This study focused on the population genetics of L. salmonis around the coasts of Scotland: We sampled fish from wild and cultured stocks and included salmon (Salmo salar L.), rainbow trout (Oncorhynchus mykiss Walbaum) and sea trout as host species. Analyses of allozyme variation of sea lice were confined to data for two polymorphic loci (Fum, Got-2) and conformed to our initial expectation — that the inclusion of a planktonic larval phase in the life cycle of the copepod, in addition to the high mobility of the host fish, would enhance gene flow and preclude genetic differentiation of L. salmonis populations as a result of random drift alone. DNA polymorphism was quantified by means of PCR and RAPD analysis. Six primers were screened for 16 samples (from wild and farmed salmon, wild sea trout and farmed rainbow trout) — including the east, north and west coasts of Scotland — and the data analyzed by AMOVA (Analysis of Molecular Variance). In contrast to the allozyme results, the RAPD analysis showed striking patterns of genetic differentiation around the coasts of Scotland. The overall pattern was one of genetic homogeneity of L. salmonis populations sampled from wild salmon and sea trout. All of the L. salmonis samples taken from farmed salmon and rainbow trout did, however, show highly significant levels of genetic differentiation, both between wild and farmed salmonids and among the various farms themselves. Evidence of high levels of small-scale spatial or temporal heterogeneity of RAPD marker band frequencies was shown for the one farm from which repeat samples (July and November, 1995) were analysed. Samples of sea lice taken from west coast wild sea trout subjected to RAPD analysis also revealed the occurrence of putative “farm markers” in some individual parasites, indicating that they had possibly originated from salmon farms.  相似文献   
89.
 The fatty acid compositions of the seed oils from ten pine species have been established by capillary gas-liquid chromatography of the methyl esters. With regard to either normal fatty acids or Δ5-olefinic acids, the general pattern of fatty acids did not differ from that of other pine seed oils reported previously. The main fatty acid was linoleic (9,12–18:2) acid (44.4–57.1%), followed by either oleic (9–18:1) acid (13.4–24.5%) or pinolenic (5,9,12–18:3) acid (1.5–25.2%). When applying multivariate analyses to the chemometric data (13 variables) of 49 pine species (ca. 40% of the living pine species), it was possible to distinguish between several sections: Pinea, Longifolia, Halepensis, Ponderosa-Banksiana, Sylvestris, and Cembra. The latter section was clearly divided into two sub-groups. A few species that presented a low overall content of Δ5-olefinic acids, and that grow in warm-temperate regions, were isolated from the bulk of other pine species. It is hypothesized that Δ5-olefinic acids might be related to cold-acclimation. Received: 5 June 1997 / Accepted: 17 August 1997  相似文献   
90.
Wolff JN  Gemmell NJ 《BioTechniques》2008,44(2):193-4, 196, 199
TaqMan-nuclease assays are widely used for the qualitative detection of single nucleotide polymorphisms (SNPs) and the determination of biallelic states in pooled or heterozygous DNA samples. These assays are highly specific, reproducible, and suitable for high-throughput approaches. A crucial limitation of this method, and others, is the detection qf minor allele frequencies with detection limits of generally 3% to 9% for minor allele contributions. Here we describe the combination of customized TaqMan-nuclease assay and allele-specific restriction to increase the sensitivity of this method, allowing the qualitative detection of allele contributions as low as 0.05%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号