首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1510篇
  免费   158篇
  1668篇
  2022年   12篇
  2021年   20篇
  2019年   15篇
  2018年   20篇
  2017年   15篇
  2016年   25篇
  2015年   38篇
  2014年   39篇
  2013年   54篇
  2012年   78篇
  2011年   90篇
  2010年   49篇
  2009年   38篇
  2008年   69篇
  2007年   74篇
  2006年   72篇
  2005年   72篇
  2004年   66篇
  2003年   80篇
  2002年   71篇
  2001年   54篇
  2000年   52篇
  1999年   37篇
  1998年   28篇
  1997年   18篇
  1996年   11篇
  1995年   26篇
  1994年   12篇
  1993年   12篇
  1992年   25篇
  1991年   23篇
  1990年   22篇
  1989年   14篇
  1988年   14篇
  1987年   14篇
  1985年   16篇
  1984年   11篇
  1983年   20篇
  1982年   20篇
  1981年   12篇
  1979年   12篇
  1978年   12篇
  1977年   15篇
  1975年   17篇
  1974年   12篇
  1970年   16篇
  1969年   25篇
  1968年   11篇
  1967年   15篇
  1965年   11篇
排序方式: 共有1668条查询结果,搜索用时 0 毫秒
71.
Summary The influence of oxygen on growth and production of 2,3-butanediol and acetoin by Enterobacter aerogenes was studied in continuous culture. At all dilution rates (D) studied cell mass increased steadily with increasing oxygen uptake rate (OUR), hence the micro-aerobic cultivation was energy-limited. The biomass yield on oxygen increased with D which suggests that cells need more energy for maintenance functions at lower D. At each D an optimal OUR giving highest volumetric productivity for the sum of butanediol and acetoin was found. The optimal OUR increased with D. The occurrence of optimal OURs results from the various effects of O2 on growth and specific productivity. The latter was found to be a linear function of the specific OUR irrespective of D. At optimal OUR the cells proved to have equal specific OURs and equal specific productivities representing a fixed relationship between fermentative and respiratory metabolism. The product yield based on glucose and corrected for biomass formation was 80%. A product concentration as high as 43 g/l was obtained at D =0.1 h–1 while the volumetric productivity was the highest at D =0.28 h–1 (5.6 g/l and hour). The findings further indicate that growth and product generation are obviously non-associated phenomena. Hence, high productivities may be achievable by cell recycling and cell immobilisation systems. Offprint requests to: W.-D. Deckwer  相似文献   
72.
C4-dicarboxylates, such as fumarate, l -malate and l -aspartate represent substrates for anaerobic growth of Escherichia coli by fumarate respiration. Here, we determined whether C4-dicarboxylate metabolism, as well as fumarate respiration, contribute to colonization of the mammalian intestinal tract. Metabolite profiling revealed that the murine small intestine contained high and low levels of l -aspartate and l -malate respectively, whereas fumarate was nearly absent. Under laboratory conditions, addition of C4-dicarboxylate at concentrations corresponding to the levels of the C4-dicarboxylates in the small intestine (2.6 mmol kg−1 dry weight) induced the dcuBp-lacZ reporter gene (67% of maximal) in a DcuS-DcuR-dependent manner. In addition to its role as a precursor for fumarate respiration, l -aspartate was able to supply all the nitrogen required for anaerobically growing E. coli. DcuS-DcuR-dependent genes were transcribed in the murine intestine, and mutants with defective anaerobic C4-dicarboxylate metabolism (dcuSR, frdA, dcuB, dcuA and aspA genes) were impaired for colonizing the murine gut. We conclude that l -aspartate plays an important role in providing fumarate for fumarate respiration and supplying nitrogen for E. coli in the mouse intestine.  相似文献   
73.
Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.  相似文献   
74.
Scholz O  Schubert P  Kintrup M  Hillen W 《Biochemistry》2000,39(35):10914-10920
We have examined anhydrotetracycline (atc) binding to Tet repressor (TetR) in dependence of the Mg(2+) concentration. Of all tc compounds tested so far, atc has the highest affinity for TetR, with a K(A) of 9.8 x 10(11) M(-1) in the presence of Mg(2+) and 6.5 x 10(7) M(-1) without Mg(2+). Thus, it binds TetR with 500-fold higher affinity than tc under both conditions. The Mg(2+)-free binding of atc to TetR leads to induction in vitro, demonstrating that the metal is not necessary to trigger the associated conformational change. To obtain more detailed information about Mg(2+)-free induction, we constructed and prepared to homogeneity four single-alanine substitution mutants of TetR. Three of them affect residues involved in contacting Mg(2+) (TetR H100A, E147A, and T103A), and one altered residue contacts tc TetR N82A. TetR H100A and E147A are induced by atc, with and without Mg(2+), showing 110-fold and 1000-fold decreased Mg(2+)-dependent and unchanged Mg(2+)-independent atc binding, respectively. Thus, the contacts of these residues to Mg(2+) are not necessary for induction. TetR N82A is not inducible under any of the conditions employed and shows an about 4000-fold decreased atc binding constant. The Mg(2+)-dependent affinity of TetR T103A for atc is only 400-fold reduced, but no induction with atc was observed. Thus, Thr103 must be essential for the conformational change associated with induction in the absence of Mg(2+).  相似文献   
75.
Abeta peptides are major components of the amyloid plaques that characterize Alzheimer's disease. These peptides are proteolytic cleavage products of the amyloid precursor protein (APP) and are generated by beta- and gamma-secretases. Here we show by multiparameter immunofluorescence imaging in muscle cells that localization of the Abeta40 and Abeta42 cleavage products reveals different myocyte types in a three-dimensional culture system. These myocyte types are heterogeneous by selective intracellular concentration of either Abeta40 or Abeta42 in vesicular structures, whilst only the Abeta40 peptide is secreted as indicated by Western blot analysis. This cellular pattern of APP proteolysis and Abeta peptide secretion correlates with lack of L-APP mRNA splice isoforms. Differential secretion and intracellular accumulation of Abeta peptides is characteristic for the early myocyte development and might be related to cell fusion.  相似文献   
76.
Endothelial cells (EC) control vascular smooth muscle cell (VSMC) tone by release of paracrine factors. VSMC may also influence the EC layer, and therefore, the present study hypothesized that the opening of large-conductance Ca(2+) activated K(+) (BK(Ca)) channels may indirectly modulate EC hyperpolarization and nitric oxide (NO) release via myoendothelial gap junctions (MEGJ). To address this hypothesis 'in situ' EC ion current recordings, isolated VSMC patch clamp recordings, and simultaneous measurements of NO concentration and relaxation were conducted using segments of the rat superior mesenteric artery. In arteries constricted by α(1)-adrenoceptor activation, ACh (1 μM) evoked EC outward currents, vasorelaxation, and NO release. In contrast to preincubation with iberiotoxin (IbTx, 100nM) application of IbTx after ACh decreased EC outward currents, NO release and vasorelaxation. Furthermore, in phenylephrine (Phe)-contracted arteries treated with a gap junction uncoupler, cabenoxolone (CBX), IbTx failed to decrease ACh-evoked EC outward currents. In addition, CBX decreased EC outward currents, time constant of the capacitative transients, input capacitance, and increased input resistance. In isolated VSMC CBX did not affect BK(Ca) currents. Immunohistochemistry revealed only BK(Ca) channel positive staining in the VSMC layer. Therefore, the present results suggest that BK(Ca) channels are expressed in the VSMC, and that Phe by activation of VSMC BK(Ca) channels modulates ACh-evoked EC outward currents, NO release and vasorelaxation via MEGJ in rat superior mesenteric artery.  相似文献   
77.
78.
In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA signaling in setting the posterior limit of the pharynx by repressing expression of pharyngeal markers in the posterior foregut/midgut endoderm. The spatiotemporal expression of these endodermal genes in embryos treated with RA or the RA antagonist BMS009 indicates that Pax1/9, Pitx and Notch are probably more upstream than Otx and Nodal in the hierarchy of genes repressed by RA signaling. This work highlights the potential of amphioxus, a genomically simple, vertebrate-like invertebrate chordate, as a paradigm for understanding gene hierarchies similar to the more complex ones of vertebrates.  相似文献   
79.
Growth of Rhodobacter capsulatus with molecular dinitrogen as the sole N source via the alternative Fe-only nitrogenase requires all seven gene products of the anfHDGK-1-2-3 operon. In contrast to mutant strains carrying lesions in the structural genes of nitrogenase (anfH, anfD, anfG, and anfK), strains defective for either anf1, anf2, or anf3 are still able to reduce the artificial substrate acetylene, although with diminished activity. To obtain further information on the role of Anf1, we screened an R. capsulatus genomic library designed for use in yeast two-hybrid studies with Anf1 as bait. Two genes, which we propose to call ranR and ranT (for genes related to alternative nitrogenase), coding for products that interact with Anf1 were identified. A ranR mutant exhibited a phenotype similar to that of an anf1 mutant strain (no growth with N2 in the absence of molybdenum, but significant reduction of acetylene via the Fe-only nitrogenase), whereas a ranT mutant retained the ability to grow diazotrophically, but growth was clearly delayed compared to the parental strain. In contrast to the situation for anf1, expression of neither ranR nor ranT was regulated by ammonium or molybdenum. A putative role for Anf1, RanR, and RanT in the acquisition and/or processing of iron in connection with the Fe-only nitrogenase system is discussed.  相似文献   
80.
Actin is the major cytoskeletal source of dendritic spines, which are highly specialized protuberances on the neuronal surface where excitatory synaptic transmission occurs (Harris, K.M., and S.B. Kater. 1994. Annu. Rev. Neurosci. 17:341-371; Yuste, R., and D.W. Tank. 1996. Neuron. 16:701-716). Stimulation of excitatory synapses induces changes in spine shape via localized rearrangements of the actin cytoskeleton (Matus, A. 2000. Science. 290:754-758; Nagerl, U.V., N. Eberhorn, S.B. Cambridge, and T. Bonhoeffer. 2004. Neuron. 44:759-767). However, what remains elusive are the precise molecular mechanisms by which different neurotransmitter receptors forward information to the underlying actin cytoskeleton. We show that in cultured hippocampal neurons as well as in whole brain synaptosomal fractions, RhoA associates with glutamate receptors (GluRs) at the spine plasma membrane. Activation of ionotropic GluRs leads to the detachment of RhoA from these receptors and its recruitment to metabotropic GluRs. Concomitantly, this triggers a local reduction of RhoA activity, which, in turn, inactivates downstream kinase RhoA-specific kinase, resulting in restricted actin instability and dendritic spine collapse. These data provide a direct mechanistic link between neurotransmitter receptor activity and the changes in spine shape that are thought to play a crucial role in synaptic strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号