首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1508篇
  免费   158篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   20篇
  2017年   15篇
  2016年   25篇
  2015年   38篇
  2014年   39篇
  2013年   54篇
  2012年   78篇
  2011年   90篇
  2010年   49篇
  2009年   38篇
  2008年   69篇
  2007年   74篇
  2006年   72篇
  2005年   72篇
  2004年   66篇
  2003年   80篇
  2002年   71篇
  2001年   54篇
  2000年   52篇
  1999年   37篇
  1998年   28篇
  1997年   18篇
  1996年   11篇
  1995年   26篇
  1994年   12篇
  1993年   12篇
  1992年   25篇
  1991年   23篇
  1990年   22篇
  1989年   14篇
  1988年   14篇
  1987年   14篇
  1985年   16篇
  1984年   11篇
  1983年   20篇
  1982年   20篇
  1981年   12篇
  1979年   12篇
  1978年   12篇
  1977年   15篇
  1975年   17篇
  1974年   12篇
  1970年   16篇
  1969年   25篇
  1968年   11篇
  1967年   15篇
  1965年   11篇
排序方式: 共有1666条查询结果,搜索用时 15 毫秒
41.
Based on localization and high activities of pyrroline-5-carboxylate reductase and proline dehydrogenase activities in soybean nodules, we previously suggested two major roles for pyrroline-5-carboxylate reductase in addition to the production of the considerable quantity of proline needed for biosynthesis; namely, transfer of energy to the location of biological N2 fixation, and production of NADP+ to drive the pentose phosphate pathway. The latter produces ribose-5-phosphate which can be used in de novo purine synthesis required for synthesis of ureides, the major form in which biologically fixed N2 is transported from soybean root nodules to the plant shoot. In this paper, we report rapid induction (in soybean nodules) and exceptionally high activities (in nodules of eight species of N2-fixing plants) of pentose phosphate pathway and pyrroline-5-carboxylate reductase. There was a marked increase in proline dehydrogenase activity during soybean (Glycine max) ontogeny. The magnitude of proline dehydrogenase activity in bacteroids of soybean nodules was sufficiently high during most of the time course to supply a significant fraction of the energy requirement for N2 fixation. Proline dehydrogenase activity in bacteroids from nodules of other species was also high. These observations support the above hypothesis. However, comparison of pentose phosphate pathway and pyrroline-5-carboxylate reductase activities of ureide versus amide-exporting nodules offers no support. The hypothesis predicts that pyrroline-5-carboxylate and pentose phosphate pathway activities should be higher in ureide-exporting nodules than in amide-exporting nodules. This predicted distinction was not observed in the results of in vitro assays of these activities.  相似文献   
42.
Summary The influence of oxygen on growth and production of 2,3-butanediol and acetoin by Enterobacter aerogenes was studied in continuous culture. At all dilution rates (D) studied cell mass increased steadily with increasing oxygen uptake rate (OUR), hence the micro-aerobic cultivation was energy-limited. The biomass yield on oxygen increased with D which suggests that cells need more energy for maintenance functions at lower D. At each D an optimal OUR giving highest volumetric productivity for the sum of butanediol and acetoin was found. The optimal OUR increased with D. The occurrence of optimal OURs results from the various effects of O2 on growth and specific productivity. The latter was found to be a linear function of the specific OUR irrespective of D. At optimal OUR the cells proved to have equal specific OURs and equal specific productivities representing a fixed relationship between fermentative and respiratory metabolism. The product yield based on glucose and corrected for biomass formation was 80%. A product concentration as high as 43 g/l was obtained at D =0.1 h–1 while the volumetric productivity was the highest at D =0.28 h–1 (5.6 g/l and hour). The findings further indicate that growth and product generation are obviously non-associated phenomena. Hence, high productivities may be achievable by cell recycling and cell immobilisation systems. Offprint requests to: W.-D. Deckwer  相似文献   
43.
The centromeric region of a telocentric field bean chromosome that resulted from centric fission of the metacentric satellite chromosome was microdissected. The DNA of this region was amplified and biotinylated by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR)/linker-adapter PCR. After fluorescence in situ hybridization (FISH) the entire chromosome complement of Vicia faba was labelled by these probes except for the nucleolus organizing region (NOR) and the interstitial heterochromatin, the chromosomes of V. sativa and V. narbonensis were only slightly labelled by the same probes. Dense uniform labelling was also observed when a probe amplified from a clearly delimited microdissected centromeric region of a mutant of Tradescantia paludosa was hybridized to T. paludosa chromosomes. Even after six cycles of subtractive hybridization between DNA fragments amplified from centromeric and acentric regions no sequences specifically located at the field bean centromeres were found among the remaining DNA. A mouse antiserum was produced which detected nuclear proteins of 33 kDa and 68 kDa; these were predominantly located at V. faba kinetochores during mitotic metaphase. DNA amplified from the chromatin fraction adsorbed by this serum out of the sonicated total mitotic chromatin also did not cause specific labelling of primary constrictions. From these results we conclude: (1) either centromere-specific DNA sequences are not very conserved among higher plants and are — at least in species with large genomes — intermingled with complex dispersed repetitive sequences that prevent the purification of the former, or (2) (some of) the dispersed repeats themselves specify the primary constrictions by stereophysical parameters rather than by their base sequence.  相似文献   
44.
The human immunodeficiency virus type 1 (HIV-1)-specific Vpu is an 81-amino-acid amphipathic integral membrane protein with at least two different biological functions: (i) enhancement of virus particle release from the plasma membrane of HIV-1-infected cells and (ii) degradation of the virus receptor CD4 in the endoplasmic reticulum (ER). We have previously found that Vpu is phosphorylated in infected cells at two seryl residues in positions 52 and 56 by the ubiquitous casein kinase 2. To study the role of Vpu phosphorylation on its biological activity, a mutant of the vpu gene lacking both phosphoacceptor sites was introduced into the infectious molecular clone of HIV-1, pNL4-3, as well as subgenomic Vpu expression vectors. This mutation did not affect the expression level or the stability of Vpu but had a significant effect on its biological activity in infected T cells as well as transfected HeLa cells. Despite the presence of comparable amounts of wild-type and nonphosphorylated Vpu, decay of CD4 was observed only in the presence of phosphorylated wild-type Vpu. Nonphosphorylated Vpu was unable to induce degradation of CD4 even if the proteins were artificially retained in the ER. In contrast, Vpu-mediated enhancement of virus secretion was only partially dependent on Vpu phosphorylation. Enhancement of particle release by wild-type Vpu was efficiently blocked when Vpu was artificially retained in the ER, suggesting that the two biological functions of Vpu are independent, occur at different sites within a cell, and exhibit different sensitivity to phosphorylation.  相似文献   
45.
Expression and Localization of Plant Protein Disulfide Isomerase   总被引:5,自引:1,他引:4       下载免费PDF全文
A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules.  相似文献   
46.
The primary structure of the peptidoglycan and the teichoic acids of two coryneform isolates from the surface flora of French cooked cheeses, CNRZ 925 and CNRZ 926, have been determined. In the peptidoglycan, meso-diaminopimelic acid was localized in position three of the peptide subunit. It contained an d-glutamyl-d-aspartyl interpeptide bridge, connecting meso-diaminopimelic acid and d-alanine residues of adjacent peptide subunits. The -carboxyl group of d-glutamic acid in position two of peptide subunits was substituted with glycine amide. The teichoic acid pattern and composition differed between the strains: both contained an erythritol teichoic acid and strain CNRZ 925 also contained an N-acetylglucosaminylphosphate polymer. The erythritol teichoic acids differed in terms of the quality and quantity of substituents, but they both had N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid in common.Abbreviations DNP dinitrophenyl - Ery erythritol - Gal galactose - GlcN glucosamine - GlcNAc N-acetylglucosamine - GlcUANAc2 N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid - Hex UANAc2 N,N-diacetyl-2,3-diamino-2,3-dideoxyhexuronic - acid m-Dpm, meso-diaminopimelic acid - Mur muramic acid - MurNAc N-acetylmuramic acid  相似文献   
47.
Kubalová  Ivona  Weisshart  Klaus  Houben  Andreas  Schubert  Veit 《Chromosoma》2023,132(1):19-29
Chromosoma - Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination,...  相似文献   
48.
A novel mouse L-cell mutant cell line defective in the biosynthesis of glycosaminoglycans was isolated by selection for cells resistant to herpes simplex virus (HSV) infection. These cells, termed sog9, were derived from mutant parental gro2C cells, which are themselves defective in heparan sulfate biosynthesis and 90% resistant to HSV type 1 (HSV-1) infection compared with control L cells (S. Gruenheid, L. Gatzke, H. Meadows, and F. Tufaro, J. Virol. 67:93-100, 1993). In this report, we show that sog9 cells exhibit a 3-order-of-magnitude reduction in susceptibility to HSV-1 compared with control L cells. In steady-state labeling experiments, sog9 cells accumulated almost no [35S]sulfate-labeled or [6-3H]glucosamine-labeled glycosaminoglycans, suggesting that the initiation of glycosaminoglycan assembly was specifically reduced in these cells. Despite these defects, sog9 cells were fully susceptible to vesicular stomatitis virus (VSV) and permissive for both VSV and HSV replication, assembly, and egress. HSV plaques formed in the sog9 monolayers in proportion to the amount of input virus, suggesting the block to infection was in the virus entry pathway. More importantly, HSV-1 infection of sog9 cells was not significantly reduced by soluble heparan sulfate, indicating that infection was glycosaminoglycan independent. Infection was inhibited by soluble gD-1, however, which suggests that glycoprotein gD plays a role in the infection of this cell line. The block to sog9 cell infection by HSV-1 could be eliminated by adding soluble dextran sulfate to the inoculum, which may act by stabilizing the virus at the sog9 cell surface. Thus, sog9 cells provide direct genetic evidence for a proteoglycan-independent entry pathway for HSV-1, and results with these cells suggest that HSV-1 is a useful reagent for the direct selection of novel animal cell mutants defective in the synthesis of cell surface proteoglycans.  相似文献   
49.

Corrigendum

Use of gentian violet to differentiate in vitro and ex vitro- formed roots during acclimatization of grapevine  相似文献   
50.
In the majority of cases, the mechanism underlying the resistance to acyclovir (ACV) of herpes simplex viruses (HSVs) is thymidine kinase (TK) deficiency. Plaque isolates from eight ACV-resistant (ACVr) clinical isolates from AIDS patients, of which five reactivated, were sequenced to determine the genetic lesion within the tk gene conferring resistance and whether this may have correlated with reactivation potential. Mutations were clustered within two homopolymer nucleotide stretches. Three plaque isolates (1737-14, 90-150-3, and 89-650-5) had insertion mutations within a stretch of 7 guanosines, while two isolates (89-063-1 and 89-353-1) had frameshift mutations within a stretch of 6 cytosines (a deletion and an insertion, respectively). Mutations resulted in premature termination codons, and the predicted 28- and 32-kDa truncated TK products were detected by Western blot analysis of virus-infected cell extracts. The repair of one homopolymer frameshift mutation (in isolate 1737-14) restored TK activity, demonstrating that this mutation is the basis of TK deficiency. Of the five reactivated isolates, four were TK deficient and contained frameshift mutations while the fifth retained TK activity because of its altered-TK or Pol- phenotype. These data demonstrate that the majority of ACVr clinical isolates contain frameshift mutations within two long homopolymer nucleotide stretches which function as hot spots within the HSV tk gene and produce nonfunctional, truncated TK proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号