首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4529篇
  免费   468篇
  4997篇
  2021年   49篇
  2020年   38篇
  2018年   58篇
  2017年   41篇
  2016年   70篇
  2015年   115篇
  2014年   138篇
  2013年   175篇
  2012年   224篇
  2011年   211篇
  2010年   129篇
  2009年   141篇
  2008年   166篇
  2007年   175篇
  2006年   157篇
  2005年   155篇
  2004年   156篇
  2003年   167篇
  2002年   165篇
  2001年   141篇
  2000年   110篇
  1999年   120篇
  1998年   64篇
  1997年   60篇
  1996年   60篇
  1995年   53篇
  1994年   37篇
  1992年   88篇
  1991年   80篇
  1990年   70篇
  1989年   72篇
  1988年   70篇
  1987年   95篇
  1986年   64篇
  1985年   85篇
  1984年   62篇
  1983年   47篇
  1982年   43篇
  1981年   55篇
  1980年   45篇
  1979年   71篇
  1978年   64篇
  1977年   40篇
  1975年   44篇
  1974年   57篇
  1973年   45篇
  1972年   52篇
  1971年   44篇
  1970年   51篇
  1969年   49篇
排序方式: 共有4997条查询结果,搜索用时 15 毫秒
151.
The endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae contains of proteolytic system able to selectively degrade misfolded lumenal secretory proteins. For examination of the components involved in this degradation process, mutants were isolated. They could be divided into four complementation groups. The mutations led to stabilization of two different substrates for this process. The mutant classes were called ''der'' for ''degradation in the ER''. DER1 was cloned by complementation of the der1-2 mutation. The DER1 gene codes for a novel, hydrophobic protein, that is localized to the ER. Deletion of DER1 abolished degradation of the substrate proteins. The function of the Der1 protein seems to be specifically required for the degradation process associated with the ER. The depletion of Der1 from cells causes neither detectable growth phenotypes nor a general accumulation of unfolded proteins in the ER. In DER1-deleted cells, a substrate protein for ER degradation is retained in the ER by the same mechanism which also retains lumenal ER residents. This suggests that DER1 acts in a process that directly removes protein from the folding environment of the ER.  相似文献   
152.
In the primordial thoracic ganglia of locust embryos, the bromodeoxiuridine (BrdU) technique for labelling proliferating cells and their progeny was combined with intracellular dye injection to investigate the origin and the clonal relationship of common inhibitory motoneurons. Common inhibitors 1 (CI1) and 3 (CI3) were found to be siblings, that is, they are produced by the division of one ganglion mother cell. This ganglion mother cell results from the first division of neuroblast 5–5, at about 30% of embryonic development. A large portion, at least, of the ganglion mother cells produced by subsequent divisions of neuroblast 5–5 give rise to interneurons with contralaterally ascending or descending axons and GABA-like immunoreactivity. Thus, CI1 and CI3 are more closely related to putative inhibitory interneurons than they are to other, that is, excitatory, motoneurons. Consistent with this, the CI somata are associated with cell bodies of putative inhibitory interneurons rather than with clusters of excitatory motoneuron somata. These results elicit speculations regarding the evolutionary origin of inhibitory motoneurons. 1994 John Wiley & Sons, Inc.  相似文献   
153.
154.

Background

Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.

Results

We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.

Conclusions

Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.  相似文献   
155.
Neuritic plaques of Alzheimer patients are composed of multiple protein components. Among them, the amyloid beta-peptides (Abeta) 1-40/42 and further N- and C-terminally modified fragments of Abeta are highly abundant. Most prominent are the isoaspartate (isoAsp)-Abeta peptides and pyroglutamyl (pGlu)-Abeta. While pGlu-Abeta can only be formed from an N-terminal glutamate by glutaminyl cyclase, spontaneous isoAsp-isomerization cannot occur at an N-terminal aspartate of peptides. This means that isoAsp-Abeta formation must precede proteolysis of the amyloid precursor protein (APP). Abeta generation from APP by beta- and gamma-secretases initiates the amyloid peptide aggregation and deposition process. Two aspartate proteases have been identified as secretases: BACE-1 (beta-site amyloid precursor protein cleaving enzyme) and the intramembrane gamma-secretase multiprotein complex. However, recent evidence supports more than one beta-secretase initiating this cascade. Formation of Abeta1-40/42 was predominantly studied by expression of mutated human APP sequences in cell culture and transgenic animals, generating Abeta fragments that did not contain such multiple posttranslational modifications as in Alzheimer's disease. This prompted us to investigate the catalytic turnover of Asp- or isoAsp-containing APP-derived peptide sequences by BACE-1 and cathepsin B, another potential beta-secretase. While cathepsin B is more effective than BACE-1 in processing the Asp-containing peptide derivatives, only cathepsin B can cleave the isoAsp-containing peptides, which occurs with high catalytic efficiency.  相似文献   
156.
Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria   总被引:11,自引:0,他引:11  
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.  相似文献   
157.
158.
Strains of Drosophila melanogaster homozygous for either the AdhF or the AdhS allele were kept on food supplemented with ethanol for 20 generations. These strains (FE and SE) were tested for tolerance to ethanol and compared with control strains (FN and SN). The E strains showed increased tolerance to ethanol both in the adult and in the juvenile life stages. In adults the increase in tolerance was not accompanied by an increase in overall ADH activity. However, there were changes in the distribution of ADH over the body parts. Flies of the FE strain possessed significantly more ADH in the abdomen, compared with FN. Another set of FN and SN populations were started both on standard food and on ethanol food with reduced yeast concentrations. After 9 months ADH activities were determined in flies from these populations which had been placed on three different media: the food the populations had been kept on, regular food and regular food supplemented with ethanol. The phenotypic effects of yeast reduction on ADH activity were considerably, but longterm genetic effects were limited.  相似文献   
159.
Quantitative genetic analysis of the ovariole number of the Australian Hibiscus flower-breeding Drosophila hibisci Bock was conducted on populations from two localities along a latitudinal cline in ovariole number previously observed in the species (Starmer et al., in press). Parental strains, F1, F1r (reciprocal), F2, backcross, and backcross reciprocal generations were used in a line-cross (generation means) analysis. This analysis revealed both additive and epistatic effects as important determinants of variation in ovariole number when larvae were reared at 25°C. Maternal effects and maternal-by-progeny genetic interactions were not significant. These results are comparable to previous studies that document epistatic components as genetic determinants of ovariole number in D. melanogaster. Parallel studies on ovariole number in D. hibisci parental and hybrid generations (F1 and F1r) reared as larvae at three temperatures (18°, 21.5°, and 25°C) showed environmental effects and genotype-by-environment interactions as significant influences on the phenotype. Maternal effects were present when temperature of larval development was considered and significant, nonlinear environmental effects were detected. Field collections of D. hibisci females showed that field conditions result in significant departure of ovariole number from comparable laboratory reared females. The significant epistatic genetic effects, genotype-by-environment interactions, and maternal effects indicate that the genetic architecture of traits, such as ovariole number, may be more complex than often acknowledged and thus may be compatible with Wright's view of a netlike relationship between the genome and complex characters (Wright 1968).  相似文献   
160.
The Holliday junction is a key recombination intermediate whose resolution generates crossovers. Interplay between recombination, repair and replication has moved the Holliday junction to the center stage of nuclear DNA metabolism. Holliday junction resolvases in the eukaryotic nucleus have long eluded identification. The endonucleases Mus81/Mms4-Eme1 and XPF-MEI-9/MUS312 are structurally related to the archaeal resolvase Hjc and were found to be involved in crossover formation in budding yeast and flies, respectively. Although these endonucleases might represent one class of eukaryotic resolvases, their substrate preference opens up the possibility that junctions other than classical Holliday junctions might contribute to crossovers. Holliday junction resolution to non-crossover products can also be achieved topologically, for example, by the action of RecQ-like DNA helicases combined with topoisomerase III.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号