首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   4篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1997年   3篇
  1957年   1篇
  1950年   1篇
  1939年   1篇
  1937年   1篇
  1936年   2篇
  1932年   1篇
排序方式: 共有69条查询结果,搜索用时 296 毫秒
21.
Epidemiological studies have provided evidence of an association between vitamin D insufficiency and depression and other mood disorders, and a role for vitamin D in various brain functions has been suggested. We hypothesized that low vitamin D status during pregnancy might increase the risk of postpartum depression (PPD). The objective of the study was thus to determine whether low vitamin D status during pregnancy was associated with postpartum depression. In a case-control study nested in the Danish National Birth Cohort, we measured late pregnancy serum concentrations of 25[OH]D3 in 605 women with PPD and 875 controls. Odds ratios [OR) for PPD were calculated for six levels of 25[OH]D3. Overall, we found no association between vitamin D concentrations and risk of PPD (p = 0.08). Compared with women with vitamin D concentrations between 50 and 79 nmol/L, the adjusted odds ratios for PPD were 1.35 (95% CI: 0.64; 2.85), 0.83 (CI: 0.50; 1.39) and 1.13 (CI: 0.84; 1.51) among women with vitamin D concentrations < 15 nmol/L, 15–24 nmol/L and 25–49 nmol/L, respectively, and 1.53 (CI: 1.04; 2.26) and 1.89 (CI: 1.06; 3.37) among women with vitamin D concentrations of 80–99 nmol/L and ≥ 100 nmol/L, respectively. In an additional analysis among women with sufficient vitamin D (≥ 50 nmol/L), we observed a significant positive association between vitamin D concentrations and PPD. Our results did not support an association between low maternal vitamin D concentrations during pregnancy and risk of PPD. Instead, an increased risk of PPD was found among women with the highest vitamin D concentrations.  相似文献   
22.
23.
The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO(2)) and water vapour (H(2)O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO(2) and H(2)O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO(2) and H(2)O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO(2) than H(2)O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO(2) and H(2)O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO(2) and H(2)O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO(2), H(2)O and COS exchange and the corresponding component fluxes, are urgently needed.  相似文献   
24.
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (R e) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors.Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and R e by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with>8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV.Important findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R e, which could help to improve our predictive understanding of R e in response to climate change.  相似文献   
25.
The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002–2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE. Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem respiration at the Alpine and northern study sites, but not at the southern sites characterized by a pronounced summer drought, where soil water availability and the amount of aboveground biomass were more or equally important. The amount of assimilating plant area was the single most important biotic variable determining the maximum ecosystem carbon uptake potential, that is, the NEE at saturating PPFD. Good correspondence, in terms of the magnitude of NEE, was observed with many (semi-) natural grasslands around the world, but not with grasslands sown on fertile soils in lowland locations, which exhibited higher maximum carbon gains at lower respiratory costs. It is concluded that, through triggering rapid changes in the amount and area of the aboveground plant matter, the timing and frequency of land management practices is crucial for the short-term sensitivity of the NEE of the investigated mountain grassland ecosystems to climatic drivers.  相似文献   
26.
The binding affinity and specificity of recombinant antibodies can be modified by site-directed mutagenesis. Here we have used molecular modelling of the variable domains of an enantiospecific antibody fragment to fine-tune its affinity so it is more suitable for the fractionation of the drug enantiomers. We have shown earlier that the Fab fragment of this antibody specifically recognizes one enantiomer from the racemic mixture of a medical drug and that it can be used for the fractionation of these enantiomers by affinity chromatography. However, the affinity was unnecessarily high, requiring harsh elution conditions to release the bound enantiomer. Thus, the continuous use of the antibody affinity columns was impossible. We made a homology model of the antibody and designed mutations to the antigen-binding site to decrease the affinity. Four out of five point mutations showed decreased affinity for the hapten. Two of the mutations were also combined to construct a double mutant. The affinity columns made using one of the single mutants with lowered affinity and the double mutant were capable of multiple rounds of enantioseparation.  相似文献   
27.
28.
The maximum rate of carboxylation (Vcmax) and the potential rate of RuBP regeneration (Pml, which equals Jmax/4), as well as leaf nitrogen content (NL) and specific leaf area (SLA), were studied in sun leaves of 30 species from differently managed mountain grassland ecosystems (abandoned areas, pastures and meadows) at three study areas in the Eastern Alps. A significant correlation between Vcmax and Pml across the investigated species was observed. In comparison to a previous survey on the relationship between Pml and Vcmax, the investigated species were found to invest a proportionally smaller amount of available resources into Pml. Despite this close correlation between Vcmax and Pml, variation in the VcmaxNL and PmlNL relationships was large, indicating that the investigated species differed widely in their respective nitrogen use efficiencies. Among the investigated species, dwarf shrubs were characterized by significantly lower values of Vcmax, Pml and NL compared to graminoids and forbs, which did not differ significantly from each other. Species from abandoned areas were found to be lower with respect to Vcmax, Pml, NL and SLA than species from pastures and meadows, which were not significantly different from each other.  相似文献   
29.
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site‐years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra‐ and interspecific trait variation on ecosystem functioning.  相似文献   
30.
Munc18b is a mammalian Sec1-related protein that is abundant in epithelial cells and regulates vesicle transport to the apical plasma membrane. We constructed a homology model of Munc18b in complex with syntaxin 3 based on the crystal structure of the neuronal Sec1.syntaxin 1A complex. In this model we identified all residues in the interface between the two proteins that contribute directly to the interaction and mutagenized residues in Munc18b to alter its binding to syntaxins 1A, 2, and 3. The syntaxin-binding properties of the mutants were tested using an in vitro assay and by a co-immunoprecipitation approach employing Munc18b expressed in CHO-K1 cells. Three Munc18b variants, W28S, S42K, and E59K, were generated that are defective in binding to all three syntaxins. A fourth mutant protein, S48D, shows abolishment of syntaxin 3 interaction but binds syntaxin 2 at normal and syntaxin 1A at mildly reduced efficiency. Over-expression of Munc18b S48D inhibited transport of influenza hemagglutinin to the apical surface of Madin-Darby canine kidney II cells, which express syntaxin 2 abundantly, but not of Caco-2 cells, in which syntaxin 3 is the major apical target SNARE (soluble NSF (N-ethylmaleimide sensitive factor) attachment protein receptors). This suggests that, although syntaxin 3 is the main target SNARE operating in exocytic transport to the apical plasma membrane in certain epithelial cell types, syntaxin 2 may play an important role in this trafficking route in others.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号